{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,24]],"date-time":"2024-04-24T11:33:52Z","timestamp":1713958432062},"reference-count":28,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,7,16]],"date-time":"2015-07-16T00:00:00Z","timestamp":1437004800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5513-0","type":"journal-article","created":{"date-parts":[[2015,7,15]],"date-time":"2015-07-15T14:56:04Z","timestamp":1436972164000},"page":"587-608","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Generalized gradient learning on time series"],"prefix":"10.1007","volume":"100","author":[{"given":"Brijnesh J.","family":"Jain","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,7,16]]},"reference":[{"key":"5513_CR1","first-page":"699","volume":"11","author":"GE Batista","year":"2011","unstructured":"Batista, G. E., Wang, X., & Keogh, E. J. (2011). A complexity-invariant distance measure for time series. SIAM International Conference on Data Mining, 11, 699\u2013710.","journal-title":"SIAM International Conference on Data Mining"},{"key":"5513_CR2","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1090\/S0002-9947-1975-0367131-6","volume":"205","author":"FH Clarke","year":"1975","unstructured":"Clarke, F. H. (1975). Generalized gradients and applications. Transactions of the American Mathematical Society, 205, 247\u2013262.","journal-title":"Transactions of the American Mathematical Society"},{"key":"5513_CR3","doi-asserted-by":"crossref","unstructured":"Dietterich, T. G. (2000). Ensemble methods in machine learning. In Proceedings of the first international workshop on multiple classifier systems.","DOI":"10.1007\/3-540-45014-9_1"},{"issue":"2","key":"5513_CR4","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1007\/BF02742069","volume":"34","author":"Y Ermoliev","year":"1998","unstructured":"Ermoliev, Y., & Norkin, V. (1998). Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization. Cybernetics and Systems Analysis, 34(2), 196\u2013215.","journal-title":"Cybernetics and Systems Analysis"},{"issue":"1","key":"5513_CR5","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.engappai.2010.09.007","volume":"24","author":"T Fu","year":"2011","unstructured":"Fu, T. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1), 164\u2013181.","journal-title":"Engineering Applications of Artificial Intelligence"},{"key":"5513_CR6","doi-asserted-by":"crossref","unstructured":"Geurts, P. (2001). Pattern extraction for time series classification. In Principles of data mining and knowledge discovery, pp. 115\u2013127.","DOI":"10.1007\/3-540-44794-6_10"},{"key":"5513_CR7","doi-asserted-by":"crossref","DOI":"10.1007\/978-0-387-21606-5","volume-title":"The elements of statistical learning","author":"T Hastie","year":"2001","unstructured":"Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New York: Springer."},{"key":"5513_CR8","doi-asserted-by":"crossref","unstructured":"Hautamaki, V., Nykanen, P., & Franti, P. (2008). Time-series clustering by approximate prototypes. In International conference on pattern recognition.","DOI":"10.1109\/ICPR.2008.4761105"},{"key":"5513_CR9","unstructured":"Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., et al. (2011). The UCR time series classification\/clustering homepage. www.cs.ucr.edu\/~eamonn\/time_series_data\/ ."},{"key":"5513_CR10","unstructured":"Kruskal, J. B., & Liberman, M. (1983). The symmetric time-warping problem: From continuous to discrete. In Time warps, string edits and macromolecules: The theory and practice of sequence comparison, pp. 125\u2013161."},{"issue":"3","key":"5513_CR11","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1007\/s10618-014-0361-2","volume":"29","author":"J Lines","year":"2014","unstructured":"Lines, J., & Bagnall, A. (2014). Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 29(3), 565\u2013592.","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"1","key":"5513_CR12","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1137\/S1052623499362111","volume":"12","author":"A Nedic","year":"2001","unstructured":"Nedic, A., & Bertsekas, D. P. (2001). Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization, 12(1), 109\u2013138.","journal-title":"SIAM Journal on Optimization"},{"key":"5513_CR13","doi-asserted-by":"crossref","unstructured":"Niennattrakul, V., & Ratanamahatana, C. A. (2007). Inaccuracies of shape averaging method using dynamic time warping for time series data. In International conference on computational science, pp. 513\u2013520.","DOI":"10.1007\/978-3-540-72584-8_68"},{"key":"5513_CR14","doi-asserted-by":"crossref","unstructured":"Niennattrakul, V., & Ratanamahatana, C. A. (2007). On clustering multimedia time series data using k-means and dynamic time warping. In International conference on multimedia and ubiquitous engineering, pp. 733\u2013738.","DOI":"10.1109\/MUE.2007.165"},{"issue":"6","key":"5513_CR15","first-page":"804","volume":"22","author":"V Norkin","year":"1986","unstructured":"Norkin, V. (1986). Stochastic generalized-differentiable functions in the problem of nonconvex nonsmooth stochastic optimization. Cybernetics and Systems Analysis, 22(6), 804\u2013809.","journal-title":"Cybernetics and Systems Analysis"},{"issue":"3","key":"5513_CR16","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1016\/j.patcog.2010.09.013","volume":"44","author":"F Petitjean","year":"2011","unstructured":"Petitjean, F., Ketterlin, A., & Gancarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678\u2013693.","journal-title":"Pattern Recognition"},{"key":"5513_CR17","doi-asserted-by":"crossref","unstructured":"Petitjean, F., Forestier, G., Webb, G. I., Nicholson, A. E., Chen, Y., & Keogh, E. (2014). Dynamic time warping averaging of time series allows faster and more accurate classification. In International conference on data mining.","DOI":"10.1109\/ICDM.2014.27"},{"issue":"3","key":"5513_CR18","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1121\/1.383693","volume":"66","author":"LR Rabiner","year":"1979","unstructured":"Rabiner, L. R., & Wilpon, J. G. (1979). Considerations in applying clustering techniques to speaker-independent word recognition. The Journal of the Acoustical Society of America, 66(3), 663\u2013673.","journal-title":"The Journal of the Acoustical Society of America"},{"key":"5513_CR19","doi-asserted-by":"crossref","unstructured":"Rabiner, L. R., & Wilpon, J. G. (1980). A simplified, robust training procedure for speaker trained, isolated word recognition systems. The Journal of the Acoustical Society of America, 68(5), 1271\u20131276.","DOI":"10.1121\/1.385120"},{"key":"5513_CR20","doi-asserted-by":"crossref","unstructured":"Ratanamahatana, C. A., & Keogh, E. J. (2004). Making time- series classification more accurate using learned constraints. In SIAM international conference on data mining, pp. 11\u201322.","DOI":"10.1137\/1.9781611972740.2"},{"key":"5513_CR21","doi-asserted-by":"crossref","unstructured":"Ratanamahatana, C. A., & Keogh, E. J. (2005). Three myths about dynamic time warping data mining. In SIAM international conference on data mining, pp. 506\u2013510.","DOI":"10.1137\/1.9781611972757.50"},{"issue":"1","key":"5513_CR22","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/TASSP.1978.1163055","volume":"26","author":"H Sakoe","year":"1978","unstructured":"Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43\u201349.","journal-title":"IEEE Transactions on Acoustics, Speech, and Signal Processing"},{"key":"5513_CR23","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-82118-9","volume-title":"Minimization methods for nondifferentiable functions","author":"NZ Shor","year":"1985","unstructured":"Shor, N. Z. (1985). Minimization methods for nondifferentiable functions. Berlin, Heidelberg: Springer."},{"issue":"2","key":"5513_CR24","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1023\/A:1018741720065","volume":"10","author":"P Somervuo","year":"1999","unstructured":"Somervuo, P., & Kohonen, T. (1999). Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters, 10(2), 151\u2013159.","journal-title":"Neural Processing Letters"},{"issue":"5","key":"5513_CR25","doi-asserted-by":"crossref","first-page":"851","DOI":"10.1162\/neco.1994.6.5.851","volume":"6","author":"V Vapnik","year":"1994","unstructured":"Vapnik, V., Levin, E., & Le Cun, Y. (1994). Measuring the VC-dimension of a learning machine. Neural Computation, 6(5), 851\u2013876.","journal-title":"Neural Computation"},{"issue":"2","key":"5513_CR26","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1007\/s10618-012-0250-5","volume":"26","author":"X Wang","year":"2013","unstructured":"Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2013). Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2), 275\u2013309.","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"3","key":"5513_CR27","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1109\/TASSP.1985.1164581","volume":"33","author":"JP Wilpon","year":"1985","unstructured":"Wilpon, J. P., & Rabiner, L. R. (1985). A modified K-means clustering algorithm for use in isolated work recognition. IEEE IEEE Transactions on Acoustics, Speech and Signal Processing, 33(3), 587\u2013594.","journal-title":"IEEE IEEE Transactions on Acoustics, Speech and Signal Processing"},{"key":"5513_CR28","doi-asserted-by":"crossref","unstructured":"Xi, X., Keogh, E., Shelton, C., Wei, L., & Ratanamahatana, C. A. (2006). Fast time series classification using numerosity reduction. In International conference on machine learning, pp. 1033\u20131040.","DOI":"10.1145\/1143844.1143974"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5513-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5513-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5513-0","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T01:40:40Z","timestamp":1559353240000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5513-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,7,16]]},"references-count":28,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5513"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5513-0","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,7,16]]}}}