{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,7]],"date-time":"2024-05-07T18:19:00Z","timestamp":1715105940142},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,6,23]],"date-time":"2015-06-23T00:00:00Z","timestamp":1435017600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"DIGITEO","award":["2013-0788D"]},{"DOI":"10.13039\/501100000780","name":"European Commission","doi-asserted-by":"publisher","award":["FP7 246556"],"id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000780","name":"European Commission","doi-asserted-by":"publisher","award":["FP7-MC-CIG 334380"],"id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5511-2","type":"journal-article","created":{"date-parts":[[2015,6,22]],"date-time":"2015-06-22T14:24:37Z","timestamp":1434983077000},"page":"533-553","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Convex relaxations of penalties for sparse correlated variables with bounded total variation"],"prefix":"10.1007","volume":"100","author":[{"given":"Eugene","family":"Belilovsky","sequence":"first","affiliation":[]},{"given":"Andreas","family":"Argyriou","sequence":"additional","affiliation":[]},{"given":"Ga\u00ebl","family":"Varoquaux","sequence":"additional","affiliation":[]},{"given":"Matthew","family":"Blaschko","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,6,23]]},"reference":[{"key":"5511_CR1","unstructured":"Argyriou, A., Foygel, R., & Srebro, N. (2012). Sparse prediction with the $$k$$ k -support norm. In F. Pereira, C.J.C. Burges, L. Bottou, & K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1457\u20131465). Curran Associates, Inc."},{"issue":"1","key":"5511_CR2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000015","volume":"4","author":"F Bach","year":"2012","unstructured":"Bach, F., Jenatton, R., Mairal, J., & Obozinski, G. (2012). Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1), 1\u2013106.","journal-title":"Foundations and Trends in Machine Learning"},{"key":"5511_CR3","unstructured":"Backus, A., Jensen, O., Meeuwissen, E., van Gerven, M., & Dumoulin, S. (2011). Investigating the temporal dynamics of long term memory representation retrieval using multivariate pattern analyses on magnetoencephalography data. Tech. rep."},{"key":"5511_CR4","unstructured":"Baldassarre, L., Morales, J., Argyriou, A., & Pontil, M. (2012a). A general framework for structured sparsity via proximal optimization. In AISTATS, pp. 82\u201390."},{"key":"5511_CR5","doi-asserted-by":"crossref","unstructured":"Baldassarre, L., Mourao-Miranda, J., & Pontil, M. (2012b). Structured sparsity models for brain decoding from fMRI data. In PRNI.","DOI":"10.1109\/PRNI.2012.31"},{"key":"5511_CR6","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4419-9467-7","volume-title":"Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in mathematics","author":"HH Bauschke","year":"2011","unstructured":"Bauschke, H. H., & Combettes, P. L. (2011). Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in mathematics. Berlin: Springer."},{"issue":"11","key":"5511_CR7","doi-asserted-by":"crossref","first-page":"2419","DOI":"10.1109\/TIP.2009.2028250","volume":"18","author":"A Beck","year":"2009","unstructured":"Beck, A., & Teboulle, M. (2009). Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), 2419\u20132434.","journal-title":"IEEE Transactions on Image Processing"},{"key":"5511_CR8","doi-asserted-by":"crossref","unstructured":"Belilovsky, E., Gkirtzou, K., Misyrlis, M., Konova, A. B., Honorio, J., Alia-Klein, N., et al. (2015). Predictive sparse modeling of fMRI data for improved classification, regression, and visualization using the k-support norm. Computerized Medical Imaging and Graphics. doi: 10.1016\/j.compmedimag.2015.03.007 .","DOI":"10.1016\/j.compmedimag.2015.03.007"},{"key":"5511_CR9","volume-title":"Matrix analysis, graduate texts in mathematics","author":"R Bhatia","year":"1997","unstructured":"Bhatia, R. (1997). Matrix analysis, graduate texts in mathematics. Berlin: Springer."},{"key":"5511_CR10","unstructured":"Chatterjee, S., Chen, S., & Banerjee, A. (2014). Generalized dantzig selector: Application to the $$k$$ k -support norm. In NIPS, pp. 1934\u20131942."},{"key":"5511_CR11","unstructured":"Dohmatob, E., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging. In PRNI."},{"key":"5511_CR12","doi-asserted-by":"crossref","unstructured":"Dubois, M., Hadj-Selem, F., Lofstedt, T., Perrot, M., Fischer, C., Frouin, V., & Duchesnay, E. (2014). Predictive support recovery with TV-elastic net penalty and logistic regression: An application to structural MRI. In PRNI.","DOI":"10.1109\/PRNI.2014.6858517"},{"key":"5511_CR13","doi-asserted-by":"crossref","unstructured":"Gkirtzou, K., Honorio, J., Samaras, D., Goldstein, R.Z., & Blaschko, M.B. (2013). fMRI analysis of cocaine addiction using $$k$$ k -support sparsity. In ISBI, pp. 1078\u20131081.","DOI":"10.1109\/ISBI.2013.6556665"},{"key":"5511_CR14","doi-asserted-by":"crossref","unstructured":"Gramfort, A., Thirion, B., Varoquaux, G. (2013) Identifying predictive regions from fMRI with TV-L1 prior. In PRNI, pp. 17\u201320.","DOI":"10.1109\/PRNI.2013.14"},{"key":"5511_CR15","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1214\/11-EJS638","volume":"5","author":"M Hebiri","year":"2011","unstructured":"Hebiri, M., Van De Geer, S., et al. (2011). The smooth-lasso and other $$1+2$$ 1 + 2 -penalized methods. Electronic Journal of Statistics, 5, 1184\u20131226.","journal-title":"Electronic Journal of Statistics"},{"key":"5511_CR16","doi-asserted-by":"crossref","unstructured":"Huang, J., Zhang, T., & Metaxas, D. (2009). Learning with structured sparsity. In Proceedings of the international conference on machine learning, pp. 417\u2013424.","DOI":"10.1145\/1553374.1553429"},{"key":"5511_CR17","unstructured":"LeCun, Y., & Cortes, C. (2010). MNIST handwritten digit database. http:\/\/yann.lecun.com\/exdb\/mnist\/"},{"issue":"1","key":"5511_CR18","first-page":"2449","volume":"14","author":"J Mairal","year":"2013","unstructured":"Mairal, J., & Yu, B. (2013). Supervised feature selection in graphs with path coding penalties and network flows. JMLR, 14(1), 2449\u20132485.","journal-title":"JMLR"},{"key":"5511_CR19","unstructured":"McDonald, A.M., Pontil, M., & Stamos, D. (2014). New perspectives on k-support and cluster norms. arXiv:1403.1481"},{"issue":"7","key":"5511_CR20","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1109\/TMI.2011.2113378","volume":"30","author":"V Michel","year":"2011","unstructured":"Michel, V., Gramfort, A., Varoquaux, G., Eger, E., & Thirion, B. (2011). Total variation regularization for fMRI-based prediction of behavior. IEEE Transactions on Medical Imaging, 30(7), 1328\u20131340.","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"5511_CR21","unstructured":"Misyrlis, M., Konova, A., Blaschko, M., Honorio, J., Alia-Klein, N., Goldstein, R., & Samaras, D. (2014). Predicting cross-task behavioral variables from fMRI data using the $$k$$ k -support norm. In Sparsity techniques in medical imaging."},{"key":"5511_CR22","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4419-8853-9","volume-title":"Introductory lectures on convex optimization","author":"Y Nesterov","year":"2004","unstructured":"Nesterov, Y. (2004). Introductory lectures on convex optimization. Berlin: Springer."},{"issue":"1","key":"5511_CR23","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1137\/S1052623403422285","volume":"16","author":"Y Nesterov","year":"2005","unstructured":"Nesterov, Y. (2005). Excessive gap technique in nonsmooth convex minimization. SIAM Journal on Optimization, 16(1), 235\u2013249.","journal-title":"SIAM Journal on Optimization"},{"key":"5511_CR24","unstructured":"Parikh, N., Boyd, S., et al. (2014). Foundations and trends in optimization. Foundations and Trends in Theoretical Computer Science, 8(1\u20132)."},{"issue":"1\u20134","key":"5511_CR25","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","volume":"60","author":"LI Rudin","year":"1992","unstructured":"Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60(1\u20134), 259\u2013268.","journal-title":"Physica D"},{"key":"5511_CR26","first-page":"267","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58, 267\u2013288.","journal-title":"Journal of the Royal Statistical Society: Series B"},{"key":"5511_CR27","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1111\/j.1467-9868.2005.00490.x","volume":"67","author":"R Tibshirani","year":"2005","unstructured":"Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B, 67, 91\u2013108.","journal-title":"Journal of the Royal Statistical Society Series B"},{"key":"5511_CR28","volume-title":"Approximation Algorithms","author":"V Vazirani","year":"2001","unstructured":"Vazirani, V. (2001). Approximation Algorithms. Berlin: Springer."},{"key":"5511_CR29","doi-asserted-by":"crossref","unstructured":"Yan, S., Yang, X., Wu, C., Zheng, Z., & Guo, Y. (2014). Balancing the stability and predictive performance for multivariate voxel selection in fMRI study. In Brain informatics and health, pp. 90\u201399.","DOI":"10.1007\/978-3-319-09891-3_9"},{"key":"5511_CR30","doi-asserted-by":"crossref","unstructured":"Zaremba, W., Kumar, M. P., Gramfort, A., Blaschko, M. B. (2013). Learning from M\/EEG data with variable brain activation delays. In IPMI, pp. 414\u2013425.","DOI":"10.1007\/978-3-642-38868-2_35"},{"issue":"2","key":"5511_CR31","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/j.1467-9868.2005.00503.x","volume":"67","author":"H Zou","year":"2005","unstructured":"Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67(2), 301\u2013320.","journal-title":"Journal of the Royal Statistical Society: Series B"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5511-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5511-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5511-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,31]],"date-time":"2019-05-31T21:40:40Z","timestamp":1559338840000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5511-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,6,23]]},"references-count":31,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5511"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5511-2","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,6,23]]}}}