{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T14:31:57Z","timestamp":1723041117560},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,6,20]],"date-time":"2015-06-20T00:00:00Z","timestamp":1434758400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5507-y","type":"journal-article","created":{"date-parts":[[2015,6,19]],"date-time":"2015-06-19T20:57:51Z","timestamp":1434747471000},"page":"509-531","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":45,"title":["A decomposition of the outlier detection problem into a set of supervised learning problems"],"prefix":"10.1007","volume":"100","author":[{"given":"Heiko","family":"Paulheim","sequence":"first","affiliation":[]},{"given":"Robert","family":"Meusel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,6,20]]},"reference":[{"key":"5507_CR1","doi-asserted-by":"crossref","unstructured":"Abe, N., Zadrozny, B., & Langford, J. (2006). Outlier detection by active learning. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 504\u2013509). ACM.","DOI":"10.1145\/1150402.1150459"},{"key":"5507_CR2","doi-asserted-by":"crossref","unstructured":"Achtert, E., Kriegel, H. P., & Zimek, A. (2008). ELKI: A software system for evaluation of subspace clustering algorithms. In Scientific and statistical database management. Lecture notes in computer science (Vol. 5069, pp. 580\u2013585). Berlin, Heidelberg: Springer. doi: 10.1007\/978-3-540-69497-7_41 .","DOI":"10.1007\/978-3-540-69497-7_41"},{"key":"5507_CR3","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4614-6396-2","volume-title":"Outlier analysis","author":"CC Aggarwal","year":"2013","unstructured":"Aggarwal, C. C. (2013). Outlier analysis. Berlin: Springer."},{"key":"5507_CR4","doi-asserted-by":"crossref","unstructured":"Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the surprising behavior of distance metrics in high dimensional space. In J. Van den Bussche & V. Vianu (Eds.), Database theory\u2014ICDT 2001. Lecture notes in computer science (Vol. 1973, pp. 420\u2013434). Berlin, Heidelberg: Springer.","DOI":"10.1007\/3-540-44503-X_27"},{"key":"5507_CR5","doi-asserted-by":"crossref","unstructured":"Aggarwal, C. C., & Yu, P. S. (2001). Outlier detection for high dimensional data. SIGMOD Record, 30(2), 37\u201346. doi: 10.1145\/376284.375668 .","DOI":"10.1145\/376284.375668"},{"key":"5507_CR6","doi-asserted-by":"crossref","unstructured":"Aho, T., Zenko, B., & Dzeroski, S. (2009). Rule ensembles for multi-target regression. In ICDM (pp. 21\u201330).","DOI":"10.1109\/ICDM.2009.16"},{"key":"5507_CR7","unstructured":"Amer, M., & Goldstein, M. (2012). Nearest-neighbor and clustering based anomaly detection algorithms for rapidminer. In Proceedings of the 3rd RapidMiner community meeting and conference (RCOMM 2012) (pp. 1\u201312)."},{"key":"5507_CR8","doi-asserted-by":"crossref","unstructured":"Amer, M., Goldstein, M., & Abdennadher, S. (2013). Enhancing one-class support vector machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD workshop on outlier detection and description (ODD) (pp. 8\u201315).","DOI":"10.1145\/2500853.2500857"},{"key":"5507_CR9","doi-asserted-by":"crossref","unstructured":"Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces. In T. Elomaa, H. Mannila, & H. Toivonen (Eds.), Principles of data mining and knowledge discovery (Vol. 2431, pp. 15\u201327). Berlin, Heidelberg: Springer. doi: 10.1007\/3-540-45681-3_2 .","DOI":"10.1007\/3-540-45681-3_2"},{"key":"5507_CR10","volume-title":"Statistical inference under order restrictions: The theory and application of isotonic regression","author":"RE Barlow","year":"1972","unstructured":"Barlow, R. E., Bartholomew, D. J., Bremner, J., & Brunk, H. D. (1972). Statistical inference under order restrictions: The theory and application of isotonic regression. New York: Wiley."},{"key":"5507_CR11","volume-title":"Outliers in statistical data","author":"V Barnett","year":"1994","unstructured":"Barnett, V., & Lewis, T. (1994). Outliers in statistical data. New York: Wiley."},{"issue":"2","key":"5507_CR12","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1145\/335191.335388","volume":"29","author":"MM Breunig","year":"2000","unstructured":"Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). Lof: Identifying density-based local outliers. ACM Sigmod Record, 29(2), 93\u2013104.","journal-title":"ACM Sigmod Record"},{"key":"5507_CR13","doi-asserted-by":"crossref","unstructured":"Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.","DOI":"10.1145\/1541880.1541882"},{"key":"5507_CR14","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1\u201330.","journal-title":"The Journal of Machine Learning Research"},{"key":"5507_CR15","doi-asserted-by":"crossref","unstructured":"Elahi, M., Li, K., Nisar, W., Lv, X., & Wang, H. (2008). Efficient clustering-based outlier detection algorithm for dynamic data stream. In Fifth international conference on fuzzy systems and knowledge discovery, FSKD \u201908 (Vol. 5, pp. 298\u2013304). doi: 10.1109\/FSKD.2008.374 .","DOI":"10.1109\/FSKD.2008.374"},{"key":"5507_CR16","doi-asserted-by":"crossref","unstructured":"Emmott, A. F., Das, S., Dietterich, T., Fern, A., & Wong, W. K. (2013). Systematic construction of anomaly detection benchmarks from real data. In ACM SIGKDD workshop on outlier detection and description (pp. 16\u201321).","DOI":"10.1145\/2500853.2500858"},{"key":"5507_CR17","unstructured":"Goldstein, M. (2014). Anomaly detection. In M. Hofmann & R. Klinkenberg (Eds.), RapidMiner\u2014Data mining use cases and business analytics applications (pp. 409\u2013436). CRC Press."},{"key":"5507_CR18","doi-asserted-by":"crossref","unstructured":"Hawkins, S., He, H., Williams, G., & Baxter, R. (2002). Outlier detection using replicator neural networks. In Y. Kambayashi, W. Winiwarter, & M. Arikawa (Eds.), Data warehousing and knowledge discovery. Lecture notes in computer science (pp. 170\u2013180). Berlin, Heidelberg: Springer. doi: 10.1007\/3-540-46145-0_17 .","DOI":"10.1007\/3-540-46145-0_17"},{"issue":"9","key":"5507_CR19","doi-asserted-by":"crossref","first-page":"1641","DOI":"10.1016\/S0167-8655(03)00003-5","volume":"24","author":"Z He","year":"2003","unstructured":"He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9), 1641\u20131650.","journal-title":"Pattern Recognition Letters"},{"issue":"1","key":"5507_CR20","doi-asserted-by":"crossref","first-page":"103","DOI":"10.2298\/CSIS0501103H","volume":"2","author":"Z He","year":"2005","unstructured":"He, Z., Xu, X., Huang, Z. J., & Deng, S. (2005). Fp-outlier: Frequent pattern based outlier detection. Computer Science and Information Systems\/ComSIS, 2(1), 103\u2013118.","journal-title":"Computer Science and Information Systems\/ComSIS"},{"issue":"2","key":"5507_CR21","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1023\/B:AIRE.0000045502.10941.a9","volume":"22","author":"VJ Hodge","year":"2004","unstructured":"Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85\u2013126.","journal-title":"Artificial Intelligence Review"},{"key":"5507_CR22","unstructured":"Knorr, E. M., & Ng, R. T. (1999). Finding intensional knowledge of distance-based outliers. In Proceedings of the 25th international conference on very large data bases, VLDB \u201999 (Vol. 99, pp. 211\u2013222). San Francisco, CA: Morgan Kaufmann Publishers Inc."},{"key":"5507_CR23","doi-asserted-by":"crossref","unstructured":"Kriegel, H. P., Kr\u00f6ger, P., Schubert, E., & Zimek, A. (2009). Loop: Local outlier probabilities. In Proceedings of the 18th ACM conference on information and knowledge management (pp. 1649\u20131652). ACM.","DOI":"10.1145\/1645953.1646195"},{"key":"5507_CR24","doi-asserted-by":"crossref","unstructured":"Kriegel, H. P., Kr\u00f6ger, P., Schubert, E., & Zimek, A. (2012). Outlier detection in arbitrarily oriented subspaces. In 2012 IEEE 12th international conference on data mining, ICDM \u201912 (pp. 379\u2013388). IEEE.","DOI":"10.1109\/ICDM.2012.21"},{"issue":"1","key":"5507_CR25","first-page":"3","volume":"6","author":"FT Liu","year":"2012","unstructured":"Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1), 3.","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"key":"5507_CR26","doi-asserted-by":"crossref","unstructured":"Mej\u00eda-Lavalle, M., & S\u00e1nchez Vivar, A. (2009). Outlier detection with explanation facility. In Machine learning and data mining in pattern recognition. Lecture notes in computer science (Vol. 5632, pp. 454\u2013464). Berlin, Heidelberg: Springer. doi: 10.1007\/978-3-642-03070-3_34 .","DOI":"10.1007\/978-3-642-03070-3_34"},{"key":"5507_CR27","doi-asserted-by":"crossref","unstructured":"M\u00fcller, E., Schiffer, M., Gerwert, P., Hannen, M., Jansen, T., & Seidl, T. (2010). Sorex: Subspace outlier ranking exploration toolkit. In J. Balc\u00e1zar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), Machine learning and knowledge discovery in databases. Lecture notes in computer science (pp. 607\u2013610). Berlin, Heidelberg: Springer. doi: 10.1007\/978-3-642-15939-8_44 .","DOI":"10.1007\/978-3-642-15939-8_44"},{"issue":"2","key":"5507_CR28","first-page":"263","volume":"18","author":"P Nemenyi","year":"1962","unstructured":"Nemenyi, P. (1962). Distribution-free multiple comparisons. Biometrics, 18(2), 263.","journal-title":"Biometrics"},{"key":"5507_CR29","doi-asserted-by":"crossref","unstructured":"Padmanabhan, B., & Tuzhilin, A. (2000). Small is beautiful: Discovering the minimal set of unexpected patterns. In Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 54\u201363). ACM.","DOI":"10.1145\/347090.347103"},{"key":"5507_CR30","unstructured":"Pelleg, D., Moore, A. W. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In Proceedings of the seventeenth international conference on machine learning, ICML \u201900 (pp. 727\u2013734). San Francisco, CA: Morgan Kaufmann Publishers Inc."},{"key":"5507_CR31","doi-asserted-by":"crossref","unstructured":"Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data streams. In IEEE symposium on computational intelligence and data mining, CIDM \u201907 (pp. 504\u2013515). IEEE.","DOI":"10.1109\/CIDM.2007.368917"},{"key":"5507_CR32","unstructured":"Quinlan, J. R., et al. (1992). Learning with continuous classes. In Proceedings of the 5th Australian joint conference on artificial intelligence (Vol. 92, pp. 343\u2013348)."},{"issue":"2","key":"5507_CR33","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1080\/00401706.1981.10486261","volume":"23","author":"JH Skillings","year":"1981","unstructured":"Skillings, J. H., & Mack, G. A. (1981). On the use of a friedman-type statistic in balanced and unbalanced block designs. Technometrics, 23(2), 171\u2013177.","journal-title":"Technometrics"},{"key":"5507_CR34","unstructured":"Teng, C. M. (1999). Correcting noisy data. In Proceedings of the sixteenth international conference on machine learning, ICML \u201999 (pp. 239\u2013248). San Francisco, CA: Morgan Kaufmann Publishers Inc."},{"key":"5507_CR35","unstructured":"Wagstaff, K. L., Lanza, N. L., Thompson, D. R., Dietterich, T. G., & Gilmore, M. S. (2013). Guiding scientific discovery with explanations using demud. In AAAI conference on artificial intelligence. http:\/\/www.aaai.org\/ocs\/index.php\/AAAI\/AAAI13\/paper\/view\/6171 ."},{"key":"5507_CR36","unstructured":"Xu, L., Crammer, K., & Schuurmans, D. (2006). Robust support vector machine training via convex outlier ablation. In Proceedings of the 21st national conference on artificial intelligence, AAAI \u201906 (Vol. 1, pp. 536\u2013542). Boston, MA: AAAI Press.\u00a0 http:\/\/dl.acm.org\/citation.cfm?id=1597538.1597625 ."},{"key":"5507_CR37","doi-asserted-by":"crossref","unstructured":"Yamanishi, K., & Takeuchi, J.i. (2001). Discovering outlier filtering rules from unlabeled data: Combining a supervised learner with an unsupervised learner. In 7th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 389\u2013394). ACM.","DOI":"10.1145\/502512.502570"},{"key":"5507_CR38","doi-asserted-by":"crossref","unstructured":"Zimek, A., Gaudet, M., Campello, R. J., & Sander, J. (2013). Subsampling for efficient and effective unsupervised outlier detection ensembles. In 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 428\u2013436). ACM.","DOI":"10.1145\/2487575.2487676"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5507-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5507-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5507-y","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T01:40:40Z","timestamp":1559353240000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5507-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,6,20]]},"references-count":38,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5507"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5507-y","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,6,20]]}}}