{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T01:44:00Z","timestamp":1721871840316},"reference-count":62,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,7,11]],"date-time":"2015-07-11T00:00:00Z","timestamp":1436572800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5506-z","type":"journal-article","created":{"date-parts":[[2015,7,10]],"date-time":"2015-07-10T20:27:45Z","timestamp":1436560065000},"page":"477-507","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["Poisson Dependency Networks: Gradient Boosted Models for Multivariate Count Data"],"prefix":"10.1007","volume":"100","author":[{"given":"Fabian","family":"Hadiji","sequence":"first","affiliation":[]},{"given":"Alejandro","family":"Molina","sequence":"additional","affiliation":[]},{"given":"Sriraam","family":"Natarajan","sequence":"additional","affiliation":[]},{"given":"Kristian","family":"Kersting","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,7,11]]},"reference":[{"key":"5506_CR1","unstructured":"Ahmadi, B., Kersting, K., & Sanner, S. (2011). Multi-evidence lifted message passing, with application to PageRank and the Kalman filter. In Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI)."},{"key":"5506_CR2","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1109\/TNB.2013.2263838","volume":"12","author":"G Allen","year":"2013","unstructured":"Allen, G., & Liu, Z. (2013). A local poisson graphical model for inferring networks from sequencing data. IEEE Transactions on Nanobioscience, 12, 189\u2013198.","journal-title":"IEEE Transactions on Nanobioscience"},{"key":"5506_CR3","unstructured":"Bengio, Y., Thibodeau-Laufer, \u00c9., Alain, G., & Yosinski, J. (2014). Deep generative stochastic networks trainable by backprop. In Proceedings of the 31th international conference on machine learning (ICML) (pp. 226\u2013234)."},{"key":"5506_CR4","unstructured":"Berkes, P., Wood, F., & Pillow, J. (2008). Characterizing neural dependencies with copula models. In Proceedings of the twenty-second annual conference on neural information processing systems (NIPS) (pp. 129\u2013136)."},{"issue":"2","key":"5506_CR5","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1111\/j.2517-6161.1974.tb00999.x","volume":"36","author":"J Besag","year":"1974","unstructured":"Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 36(2), 192\u2013236.","journal-title":"Journal of the Royal Statistical Society. Series B (Methodological)"},{"key":"5506_CR6","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.tree.2008.10.008","volume":"24","author":"BM Bolker","year":"2009","unstructured":"Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., et al. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127\u2013135.","journal-title":"Trends in Ecology and Evolution"},{"key":"5506_CR7","volume-title":"Classification and regression trees","author":"L Breiman","year":"1984","unstructured":"Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Belmont: Wadsworth."},{"key":"5506_CR8","doi-asserted-by":"crossref","unstructured":"Bucila, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining (KDD) (pp. 535\u2013541).","DOI":"10.1145\/1150402.1150464"},{"key":"5506_CR9","first-page":"641","volume":"5","author":"P Chaudhuri","year":"1995","unstructured":"Chaudhuri, P., Lo, W. D., Loh, W. Y., & Yang, C. C. (1995). Generalized regression trees. Statistica Sinica, 5, 641\u2013666.","journal-title":"Statistica Sinica"},{"key":"5506_CR10","doi-asserted-by":"crossref","unstructured":"Chen, Y., Pavlov, D., & Canny, J. (2009). Large-scale behavioral targeting. In Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (CIKM) (pp. 209\u2013218).","DOI":"10.1145\/1557019.1557048"},{"key":"5506_CR11","unstructured":"Choi, J., & Amir, E. (2010). Lifted inference for relational continuous models. In Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI)."},{"key":"5506_CR12","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1017\/S0020268100035435","volume":"72","author":"RD Clarke","year":"1946","unstructured":"Clarke, R. D. (1946). An application of the poisson distribution. Journal of the Institute of Actuaries, 72, 481.","journal-title":"Journal of the Institute of Actuaries"},{"key":"5506_CR13","first-page":"2113","volume":"9","author":"TG Dietterich","year":"2008","unstructured":"Dietterich, T. G., Hao, G., & Ashenfelter, A. (2008). Gradient tree boosting for training conditional random fields. Journal of Machine Learning Research, 9, 2113\u20132139.","journal-title":"Journal of Machine Learning Research"},{"key":"5506_CR14","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1093\/biostatistics\/kxp018","volume":"19","author":"A Dobra","year":"2009","unstructured":"Dobra, A. (2009). Variable selection and dependency networks for genomewide data. Biostatistics, 19, 621\u2013639.","journal-title":"Biostatistics"},{"key":"5506_CR15","doi-asserted-by":"crossref","unstructured":"Dobra, A., & Gehrke, J. (2002). SECRET: A scalable linear regression tree algorithm. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 481\u2013487).","DOI":"10.1145\/775047.775117"},{"key":"5506_CR16","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1111\/j.1365-2656.2008.01390.x","volume":"77","author":"J Elith","year":"2008","unstructured":"Elith, J., Leathwick, J., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802\u2013813.","journal-title":"Journal of Animal Ecology"},{"key":"5506_CR17","volume-title":"An introduction to probability theory and its applications","author":"W Feller","year":"1968","unstructured":"Feller, W. (1968). An introduction to probability theory and its applications. London: Wiley."},{"issue":"5","key":"5506_CR18","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1214\/aos\/1013203451","volume":"29","author":"JH Friedman","year":"2001","unstructured":"Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189\u20131232.","journal-title":"The Annals of Statistics"},{"key":"5506_CR19","doi-asserted-by":"crossref","unstructured":"Gehler, P., Holub, A., & Welling, M. (2006). The rate adapting poisson model for information retrieval and object recognition. In Proceedings of the twenty-third international conference (ICML) (pp. 337\u2013344).","DOI":"10.1145\/1143844.1143887"},{"key":"5506_CR20","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1109\/TPAMI.1984.4767596","volume":"6","author":"S Geman","year":"1984","unstructured":"Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721\u2013741.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"5506_CR21","first-page":"6843","volume":"6","author":"M Ghitany","year":"2012","unstructured":"Ghitany, M., Karlis, D., Al-Mutairi, D., & Al-Awadhi, F. (2012). An em algorithm for multivariate poisson regression models and its application. Applied Mathematical Sciences, 6, 6843\u20136856.","journal-title":"Applied Mathematical Sciences"},{"key":"5506_CR22","doi-asserted-by":"crossref","unstructured":"Goodman, N. (2013). The principles and practice of probabilistic programming. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL) (pp. 399\u2013402).","DOI":"10.1145\/2429069.2429117"},{"key":"5506_CR23","unstructured":"Gopalan, P., Charlin, L., & Blei, D. (2014). Content-based recommendations with poisson factorization. In Proceedings of the annual conference on neural information processing systems (NIPS) (pp. 3176\u20133184)."},{"key":"5506_CR24","unstructured":"Guo, Y., & Gu, S. (2011). Multi-label classification using conditional dependency networks. In Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI) (pp. 1300\u20131305)."},{"key":"5506_CR25","unstructured":"Hadiji, F., Kersting, K., Bauckhage, C., & Ahmadi, B. (2013). GeoDBLP: Geo-tagging DBLP for mining the sociology of computer science. arXiv preprint arXiv:1304.7984 ."},{"key":"5506_CR26","doi-asserted-by":"crossref","unstructured":"Hadiji, F., Sifa, R., Drachen, A., Thurau, C., Kersting, K., & Bauckhage, C. (2014). Predicting player churn in the wild. In Proceedings of the IEEE conference on computational intelligence and games (CIG).","DOI":"10.1109\/CIG.2014.6932876"},{"key":"5506_CR27","first-page":"49","volume":"1","author":"D Heckerman","year":"2000","unstructured":"Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for density estimation, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1, 49\u201376.","journal-title":"Journal of Machine Learning Research"},{"key":"5506_CR28","unstructured":"Hoff, P. (2003). Random effects models for network data. In R. Breiger, K. Carley, & P. Pattison (Eds.), Dynamic social network modeling and analysis: Workshop summary and papers (pp. 303\u2013312). Washington: The National Academies Press."},{"key":"5506_CR29","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1613\/jair.2861","volume":"36","author":"F Hutter","year":"2009","unstructured":"Hutter, F., Hoos, H. H., Leyton-Brown, K., & St\u00fctzle, T. (2009). ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research, 36, 267\u2013306.","journal-title":"Journal of Artificial Intelligence Research"},{"key":"5506_CR30","unstructured":"Inouye, D., Ravikumar, P., & Dhillon, I. (2014a). Admixture of poisson mrfs: A topic model with word dependencies. In Proceedings of the 31th international conference on machine learning (ICML) (pp. 683\u2013691)."},{"key":"5506_CR31","unstructured":"Inouye, D., Ravikumar, P., & Dhillon, I. (2014b). Capturing semantically meaningful word dependencies with an admixture of Poisson MRFs. In Proceedings of the annual conference on neural information processing systems (NIPS) (pp. 3158\u20133166)."},{"issue":"4","key":"5506_CR32","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/S0167-7152(97)00041-2","volume":"35","author":"MS Kaiser","year":"1997","unstructured":"Kaiser, M. S., & Cressie, N. (1997). Modeling poisson variables with positive spatial dependence. Statistics and Probability Letters, 35(4), 423\u2013432.","journal-title":"Statistics and Probability Letters"},{"key":"5506_CR33","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1080\/0266476022000018510","volume":"30","author":"D Karlis","year":"2003","unstructured":"Karlis, D. (2003). An EM algorithm for multivariate poisson distribution and related models. Journal of Applied Statistics, 30, 63\u201377.","journal-title":"Journal of Applied Statistics"},{"issue":"3","key":"5506_CR34","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1111\/1467-9884.00366","volume":"52","author":"D Karlis","year":"2003","unstructured":"Karlis, D., & Ntzoufras, I. (2003). Analysis of sports data by using bivariate poisson models. Journal of the Royal Statistical Society: Series D (The Statistician), 52(3), 381\u2013393.","journal-title":"Journal of the Royal Statistical Society: Series D (The Statistician)"},{"key":"5506_CR35","doi-asserted-by":"crossref","unstructured":"Kersting, K., & Driessens, K. (2008). Non-parametric policy gradients: A unified treatment of propositional and relational domains. In Proceedings of the twenty-fifth international conference (ICML) (pp. 456\u2013463).","DOI":"10.1145\/1390156.1390214"},{"key":"5506_CR36","doi-asserted-by":"crossref","unstructured":"Khot, T., Natarajan, S., Kersting, K., & Shavlik, J. (2011). Learning markov logic networks via functional gradient boosting. In Proceedings of the 11th IEEE international conference on data mining (ICDM) (pp. 320\u2013329).","DOI":"10.1109\/ICDM.2011.87"},{"key":"5506_CR37","volume-title":"Probabilistic graphical models","author":"D Koller","year":"2009","unstructured":"Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Cambridge: The MIT Press."},{"key":"5506_CR38","unstructured":"Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings 18th international conference on machine learning (pp. 282\u2013289). Morgan Kaufmann, San Francisco, CA."},{"key":"5506_CR39","unstructured":"Lee, E. H. (2014). Copula analysis of correlated counts. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in econometrics (Chap. 16, pp. 325\u2013348). Bradford: Emerals Group Publishing."},{"key":"5506_CR40","unstructured":"Lee, D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. In Proceedings of neural information processing systems (NIPS) (pp. 556\u2013562)."},{"issue":"7","key":"5506_CR41","doi-asserted-by":"crossref","first-page":"1010","DOI":"10.1109\/TMI.2007.896925","volume":"26","author":"A Lehmussola","year":"2007","unstructured":"Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., & Yli-Harja, O. (2007). Computational framework for simulating fluorescence microscope images with cell populations. IEEE Transactions on Medical Imaging, 26(7), 1010\u20131016.","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"1","key":"5506_CR42","first-page":"501","volume":"15","author":"D Lowd","year":"2014","unstructured":"Lowd, D., & Davis, J. (2014). Improving Markov network structure learning using decision trees. Journal of Machine Learning Research, 15(1), 501\u2013532.","journal-title":"Journal of Machine Learning Research"},{"key":"5506_CR43","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4899-3242-6","volume-title":"Generalized linear models","author":"P McCullagh","year":"1989","unstructured":"McCullagh, P., & Nelder, J. (1989). Generalized linear models. London: Chapman and Hall."},{"issue":"3","key":"5506_CR44","doi-asserted-by":"crossref","first-page":"1436","DOI":"10.1214\/009053606000000281","volume":"34","author":"N Meinshausen","year":"2006","unstructured":"Meinshausen, N., & B\u00fchlmann, P. (2006). High dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3), 1436\u20131462.","journal-title":"The Annals of Statistics"},{"key":"5506_CR45","unstructured":"Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI) (pp. 1352\u20131359)."},{"key":"5506_CR46","doi-asserted-by":"crossref","unstructured":"Natarajan, S., Kersting, K., Khot, T., & Shavlik, J. (2014a). Boosted statistical relational learners: From benchmarks to data-driven medicine. Berlin: Springer.","DOI":"10.1007\/978-3-319-13644-8"},{"issue":"1","key":"5506_CR47","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/s10994-011-5244-9","volume":"86","author":"S Natarajan","year":"2012","unstructured":"Natarajan, S., Khot, T., Kersting, K., Gutmann, B., & Shavlik, J. (2012). Gradient-based boosting for statistical relational learning: The relational dependency network case. Machine Learning Journal, 86(1), 25\u201356.","journal-title":"Machine Learning Journal"},{"key":"5506_CR48","doi-asserted-by":"crossref","unstructured":"Natarajan, S., Leiva, J. M. P., Khot, T., Kersting, K., Re, C., & Shavlik, J. (2014b). Effectively creating weakly labeled training examples via approximate domain knowledge. In ILP.","DOI":"10.1007\/978-3-319-23708-4_7"},{"key":"5506_CR49","doi-asserted-by":"crossref","unstructured":"Natarajan, S., Saha, B., Joshi, S., Edwards, A., Khot, T., Davenport, E. M., et al. (2014c). Relational learning helps in three-way classification of alzheimer patients from structural magnetic resonance images of the brain. International Journal of Machine Learning and Cybernetics, 5(5), 659\u2013669.","DOI":"10.1007\/s13042-013-0161-9"},{"key":"5506_CR50","doi-asserted-by":"crossref","unstructured":"Radev, D., Muthukrishnan, P., & Qazvinian, V. (2009). The ACL anthology network corpus. In Proceedings, ACL workshop on natural language processing and information retrieval for digital libraries. Singapore.","DOI":"10.3115\/1699750.1699759"},{"issue":"3","key":"5506_CR51","doi-asserted-by":"crossref","first-page":"1287","DOI":"10.1214\/09-AOS691","volume":"38","author":"P Ravikumar","year":"2010","unstructured":"Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional ising model selection using a l1-regularized logistic regression. The Annals of Statistics, 38(3), 1287\u20131936.","journal-title":"The Annals of Statistics"},{"key":"5506_CR52","unstructured":"Ridgeway, G. (2006). Generalized boosted models: A guide to the GBM package. R vignette."},{"key":"5506_CR53","unstructured":"Saul, L., & Lee, D. (2001). Multiplicative updates for classification by mixture models. In Proceedings of neural information processing systems (NIPS) (pp. 897\u2013904)."},{"key":"5506_CR54","doi-asserted-by":"crossref","unstructured":"Sha, F., Saul, L. K., & Lee, D. D. (2003). Multiplicative updates for large margin classifiers. In Proceedings of the 16th annual conference on computational learning theory (COLT) (pp. 188\u2013202).","DOI":"10.1007\/978-3-540-45167-9_15"},{"key":"5506_CR55","unstructured":"Singla, P., & Domingos, P. (2007). Markov logic in infinite domains. In Proceedings of the twenty-third conference on uncertainty in artificial intelligence (UAI) (pp. 368\u2013375)."},{"key":"5506_CR56","unstructured":"Therneau, T. M., Atkinson, B., & Ripley, B. (2011). rpart: Recursive Partitioning. http:\/\/CRAN.R-project.org\/package=rpart"},{"key":"5506_CR57","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1081\/SAC-120037235","volume":"33","author":"P Tsiamyrtzis","year":"2004","unstructured":"Tsiamyrtzis, P., & Karlis, D. (2004). Strategies for efficient computation of multivariate poisson probabilities. Communications in Statistics, Simulation and Computation, 33, 271\u2013292.","journal-title":"Communications in Statistics, Simulation and Computation"},{"key":"5506_CR58","doi-asserted-by":"crossref","unstructured":"Weiss, J., Natarajan, S., Peissig, P., McCarty, C., & Page, D. (2012). Statistical relational learning to predict primary myocardial infarction from electronic health records. In Proceedings of the twenty-fourth annual conference on innovative applications of artificial intelligence (IAAI-12).","DOI":"10.1609\/aaai.v26i2.18981"},{"key":"5506_CR59","doi-asserted-by":"crossref","unstructured":"Xiang, R., & Neville, J. (2013). Collective inference for network data with copula latent markov networks. In Proceedings of the sixth ACM international conference on web search and data mining (WSDM) (pp. 647\u2013656).","DOI":"10.1145\/2433396.2433477"},{"key":"5506_CR60","unstructured":"Yang, E., Ravikumar, P., Allen, G., & Liu, Z. (2012). Graphical models via generalized linear models. In Proceedings of the annual conference on neural information processing systems (NIPS) (pp. 1367\u20131375)."},{"key":"5506_CR61","unstructured":"Yang, E., Ravikumar, P., Allen, G.I., & Liu, Z. (2013). On poisson graphical models. In Proceedings of the annual conference on neural information processing systems (NIPS) (pp. 1718\u20131726)."},{"issue":"1\u20133","key":"5506_CR62","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1016\/j.neucom.2006.11.023","volume":"71","author":"Z Yang","year":"2007","unstructured":"Yang, Z., & Laaksonen, J. (2007). Multiplicative updates for non-negative projections. Neurocomputing, 71(1\u20133), 363\u2013373.","journal-title":"Neurocomputing"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5506-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5506-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5506-z","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,12]],"date-time":"2023-08-12T04:59:35Z","timestamp":1691816375000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5506-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,7,11]]},"references-count":62,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5506"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5506-z","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,7,11]]}}}