{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,23]],"date-time":"2024-07-23T04:35:28Z","timestamp":1721709328099},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,6,23]],"date-time":"2015-06-23T00:00:00Z","timestamp":1435017600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5497-9","type":"journal-article","created":{"date-parts":[[2015,6,22]],"date-time":"2015-06-22T19:22:32Z","timestamp":1435000952000},"page":"399-424","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Generalized Twin Gaussian processes using Sharma\u2013Mittal divergence"],"prefix":"10.1007","volume":"100","author":[{"given":"Mohamed","family":"Elhoseiny","sequence":"first","affiliation":[]},{"given":"Ahmed","family":"Elgammal","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,6,23]]},"reference":[{"key":"5497_CR1","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1109\/TPAMI.2006.21","volume":"28","author":"A Agarwal","year":"2006","unstructured":"Agarwal, A., & Triggs, B. (2006). Recovering 3d human pose from monocular images. Pattern Analysis and Machine Intelligence, 28, 44\u201358.","journal-title":"Pattern Analysis and Machine Intelligence"},{"key":"5497_CR2","doi-asserted-by":"crossref","unstructured":"Aghagolzadeh, M., Soltanian-Zadeh, H., Araabi, B., & Aghagolzadeh, A. (2007). A hierarchical clustering based on mutual information maximization. In ICIP.","DOI":"10.1109\/ICIP.2007.4378945"},{"key":"5497_CR3","unstructured":"Akturk, E., Bagci, G., & Sever, R. (2007). Is sharma-mittal entropy really a step beyond tsallis and r\u00e9nyi entropies? http:\/\/arxiv.org\/abs\/cond-mat\/0703277"},{"key":"5497_CR4","doi-asserted-by":"crossref","first-page":"3310","DOI":"10.1007\/s10773-008-9766-2","volume":"47","author":"O\u00dc Akt\u00fcrk","year":"2008","unstructured":"Akt\u00fcrk, O. \u00dc., Akt\u00fcrk, E., & Tomak, M. (2008). Can Sobolev inequality be written for Sharma-Mittal entropy? International Journal of Theoretical Physics, 47, 3310\u20133320.","journal-title":"International Journal of Theoretical Physics"},{"key":"5497_CR5","unstructured":"Alvarado, F. L. (1999). The matrix inversion lemma. Technical report, The University of Wisconsin, Madison, Wisconsin, 53706, USA."},{"key":"5497_CR6","volume-title":"Methods of information geometry, translations of mathematical monographs","author":"SI Amari","year":"2000","unstructured":"Amari, S. I., & Nagaoka, H. (2000). Methods of information geometry, translations of mathematical monographs (Vol. 191). Oxford: Oxford University Press."},{"key":"5497_CR7","first-page":"1705","volume":"6","author":"A Banerjee","year":"2005","unstructured":"Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences. The Journal of Machine Learning Research, 6, 1705\u20131749.","journal-title":"The Journal of Machine Learning Research"},{"key":"5497_CR8","doi-asserted-by":"crossref","unstructured":"Bo, L., & Sminchisescu, C. (2009). Structured output-associative regression. In CVPR.","DOI":"10.1109\/CVPR.2009.5206699"},{"key":"5497_CR9","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1007\/s11263-008-0204-y","volume":"87","author":"L Bo","year":"2010","unstructured":"Bo, L., & Sminchisescu, C. (2010). Twin gaussian processes for structured prediction. International Journal of Computer Vision, 87, 28\u201352.","journal-title":"International Journal of Computer Vision"},{"key":"5497_CR10","doi-asserted-by":"crossref","first-page":"1532","DOI":"10.3390\/e12061532","volume":"12","author":"A Cichocki","year":"2010","unstructured":"Cichocki, A., & Ichi Amari, S. (2010). Families of alpha- beta- and gamma- divergences: Flexible and robust measures of similarities. Entropy, 12, 1532\u20131568.","journal-title":"Entropy"},{"key":"5497_CR11","doi-asserted-by":"crossref","unstructured":"Cichocki, A., Lee, H., Kim, Y. D., & Choi, S. (2008). Non-negative matrix factorization with $$\\alpha $$ \u03b1 -divergence. Pattern Recognition Letters, 29(9), 1433\u20131440.","DOI":"10.1016\/j.patrec.2008.02.016"},{"key":"5497_CR12","doi-asserted-by":"crossref","first-page":"134","DOI":"10.3390\/e13010134","volume":"13","author":"A Cichocki","year":"2011","unstructured":"Cichocki, A., Cruces, S., & Si, Amari. (2011). Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy, 13, 134\u2013170.","journal-title":"Entropy"},{"key":"5497_CR13","unstructured":"Cristianini, J. N.Shawe-Taylor., & Kandola, J. S. (2001). Spectral kernel methods for clustering. In NIPS."},{"key":"5497_CR14","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1214\/aoms\/1177704567","volume":"33","author":"MH DeGroot","year":"1962","unstructured":"DeGroot, M. H. (1962). Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics, 33, 404\u2013419.","journal-title":"Annals of Mathematical Statistics"},{"key":"5497_CR15","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1140\/epjb\/e2002-00412-6","volume":"30","author":"T Frank","year":"2002","unstructured":"Frank, T., & Plastino, A. (2002). Generalized thermostatistics based on the sharma-mittal entropy and escort mean values. European Physical Journal B, 30, 543\u2013549.","journal-title":"European Physical Journal B"},{"key":"5497_CR16","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4757-3982-4","volume-title":"Entropy and information theory","author":"RM Gray","year":"1990","unstructured":"Gray, R. M. (1990). Entropy and information theory. New York: Springer."},{"key":"5497_CR17","doi-asserted-by":"crossref","unstructured":"Gretton, A., Bousquet, O., Smola, A., & Sch\u00f6lkopf, B. (2005). Measuring statistical dependence with hilbert-schmidt norms. In International conference on algorithmic learning theory.","DOI":"10.1007\/11564089_7"},{"key":"5497_CR18","unstructured":"Hero, A. O., Ma, B., Michel, O., & Gorman, J. (2001). Alpha-divergence for classification, indexing and retrieval. Technical report, University of Michigan."},{"key":"5497_CR19","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1109\/34.291440","volume":"16","author":"JJ Hull","year":"1994","unstructured":"Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 550\u2013554.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"5497_CR20","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/BF02418571","volume":"30","author":"JLWV Jensen","year":"1906","unstructured":"Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les in eg\u0301alite\u015b entre les valeurs moyennes. Acta Mathematica, 30, 175\u2013193.","journal-title":"Acta Mathematica"},{"key":"5497_CR21","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1109\/TCOM.1967.1089532","volume":"15","author":"T Kailath","year":"1967","unstructured":"Kailath, T. (1967). The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology, 15, 52\u201360.","journal-title":"IEEE Transactions on Communication Technology"},{"key":"5497_CR22","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1162\/neco.2007.19.3.780","volume":"19","author":"R Kompass","year":"2007","unstructured":"Kompass, R. (2007). A generalized divergence measure for nonnegative matrix factorization. Neural Computation, 19, 780\u2013791.","journal-title":"Neural Computation"},{"key":"5497_CR23","doi-asserted-by":"crossref","unstructured":"Kybic, J. (2006). Incremental updating of nearest neighbor-based high-dimensional entropy estimation. In ICASSP.","DOI":"10.1109\/ICASSP.2006.1660776"},{"key":"5497_CR24","first-page":"1271","volume":"4","author":"EG Learned-Miller","year":"2003","unstructured":"Learned-Miller, E. G., & Fisher-III, J. W. (2003). Ica using spacings estimates of entropy. The Journal of Machine Learning Research, 4, 1271\u20131295.","journal-title":"The Journal of Machine Learning Research"},{"issue":"3","key":"5497_CR25","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.physleta.2005.01.094","volume":"338","author":"M Masi","year":"2005","unstructured":"Masi, M. (2005). A step beyond tsallis and r\u00e9nyi entropies. Physics Letters A, 338(3), 217\u2013224.","journal-title":"Physics Letters A"},{"key":"5497_CR26","doi-asserted-by":"crossref","unstructured":"Nielsen, F., & Nock, R. (2012). A closed-form expression for the sharmamittal entropy of exponential families. Journal of Physics A: Mathematical and Theoretical, 45(3).","DOI":"10.1088\/1751-8113\/45\/3\/032003"},{"key":"5497_CR27","unstructured":"Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Technical University of Denmark, pp. 7\u201315."},{"key":"5497_CR28","doi-asserted-by":"crossref","unstructured":"P\u00f3czos, B., & L\u00f5rincz, A. (2005). Independent subspace analysis using geodesic spanning trees. In ICML.","DOI":"10.1145\/1102351.1102436"},{"key":"5497_CR29","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/3206.001.0001","volume-title":"Gaussian processes for machine learning","author":"CE Rasmussen","year":"2005","unstructured":"Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian processes for machine learning. Cambridge: The MIT Press."},{"key":"5497_CR30","first-page":"731","volume":"12","author":"MD Reid","year":"2011","unstructured":"Reid, M. D., & Williamson, R. C. (2011). Information, divergence and risk for binary experiments. The Journal of Machine Learning Research, 12, 731\u2013817.","journal-title":"The Journal of Machine Learning Research"},{"key":"5497_CR31","unstructured":"R\u00e9nyi, A. (1960). On measures of entropy and information. In Berkeley symposium on mathematics, statistics and probability."},{"key":"5497_CR32","unstructured":"Shan, C., Gong, S., & Mcowan, P. W. (2005). Conditional mutual information based boosting for facial expression recognition. In BMVC."},{"key":"5497_CR33","first-page":"3","volume":"5","author":"CE Shannon","year":"2001","unstructured":"Shannon, C. E. (2001). A mathematical theory of communication. SIGMOBILE, 5, 3\u201355.","journal-title":"SIGMOBILE"},{"key":"5497_CR34","first-page":"122","volume":"10","author":"BD Sharma","year":"1975","unstructured":"Sharma, B. D., & Mittal, D. (1975). New non-additive measures of entropy for discrete probability distributions. Journal of Mathematical Sciences, 10, 122\u2013133.","journal-title":"Journal of Mathematical Sciences"},{"key":"5497_CR35","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1007\/s11263-009-0273-6","volume":"87","author":"L Sigal","year":"2010","unstructured":"Sigal, L., Balan, A. O., & Black, M. J. (2010). Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision, 87, 4\u201327.","journal-title":"International Journal of Computer Vision"},{"key":"5497_CR36","doi-asserted-by":"crossref","unstructured":"Szab, Z., Pczos, B., & Lrincz, A. (2007). Undercomplete blind subspace deconvolution via linear prediction. In ECML.","DOI":"10.1007\/978-3-540-74958-5_75"},{"key":"5497_CR37","doi-asserted-by":"crossref","DOI":"10.1137\/1.9780898719574","volume-title":"Numerical linear algebra. Society for Industrial and Applied Mathematics","author":"LN Trefethen","year":"1997","unstructured":"Trefethen, L. N., & Bau, D. (1997). Numerical linear algebra. Society for Industrial and Applied Mathematics. Philadelphia: SIAM."},{"key":"5497_CR38","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1007\/BF01016429","volume":"52","author":"C Tsallis","year":"1988","unstructured":"Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479\u2013487.","journal-title":"Journal of Statistical Physics"},{"key":"5497_CR39","doi-asserted-by":"crossref","unstructured":"Tsallis, C., Plastino, A. R., & Alvarez-Estrada, R. F. (2009). Escort mean values and the characterization of power-law-decaying probability densities. Journal of Mathematical Physics. doi: 10.1063\/1.3104063","DOI":"10.1063\/1.3104063"},{"key":"5497_CR40","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1162\/neco.2008.10-06-383","volume":"20","author":"MM Hulle Van","year":"2008","unstructured":"Van Hulle, M. M. (2008). Constrained subspace ica based on mutual information optimization directly. Neural Computing, 20, 964\u2013973.","journal-title":"Neural Computing"},{"key":"5497_CR41","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.1109\/TKDE.2012.51","volume":"25","author":"YX Wang","year":"2013","unstructured":"Wang, Y. X., & Zhang, Y. J. (2013). Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on Knowledge and Data Engineering, 25, 1336\u20131353.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"5497_CR42","doi-asserted-by":"crossref","unstructured":"Yamada, M., Sigal, L., & Raptis, M. (2012). No bias left behind: Covariate shift adaptation for discriminative 3d pose estimation. In ECCV.","DOI":"10.1007\/978-3-642-33765-9_48"},{"key":"5497_CR43","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1162\/08997660460734047","volume":"16","author":"J Zhang","year":"2004","unstructured":"Zhang, J. (2004). Divergence function, duality, and convex analysis. Neural Computation, 16, 159\u2013195.","journal-title":"Neural Computation"},{"key":"5497_CR44","doi-asserted-by":"crossref","unstructured":"Zhang, J. (2007). A note on curvature of $$\\alpha $$ \u03b1 -connections of a statistical manifold. Annals of the Institute of Statistical Mathematics, 59(1), 161\u2013170.","DOI":"10.1007\/s10463-006-0105-1"},{"key":"5497_CR45","doi-asserted-by":"crossref","first-page":"5384","DOI":"10.3390\/e15125384","volume":"15","author":"J Zhang","year":"2013","unstructured":"Zhang, J. (2013). Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy, 15, 5384\u20135418.","journal-title":"Entropy"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5497-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5497-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5497-9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,27]],"date-time":"2019-08-27T15:08:41Z","timestamp":1566918521000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5497-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,6,23]]},"references-count":45,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5497"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5497-9","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,6,23]]}}}