{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,3,28]],"date-time":"2022-03-28T21:17:36Z","timestamp":1648502256506},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,5,5]],"date-time":"2015-05-05T00:00:00Z","timestamp":1430784000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61332016"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61170127"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5496-x","type":"journal-article","created":{"date-parts":[[2015,5,4]],"date-time":"2015-05-04T15:02:46Z","timestamp":1430751766000},"page":"379-398","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Consensus hashing"],"prefix":"10.1007","volume":"100","author":[{"given":"Cong","family":"Leng","sequence":"first","affiliation":[]},{"given":"Jian","family":"Cheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,5,5]]},"reference":[{"issue":"6","key":"5496_CR1","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1145\/293347.293348","volume":"45","author":"S Arya","year":"1998","unstructured":"Arya, S., Mount, D., Netanyahu, N., Silverman, R., & Wu, A. (1998). An optimal algorithm for approximate nearest neighbor searching. Journal of ACM, 45(6), 891\u2013923.","journal-title":"Journal of ACM"},{"issue":"2","key":"5496_CR2","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123\u2013140.","journal-title":"Machine Learning"},{"issue":"1","key":"5496_CR3","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5\u201332.","journal-title":"Machine Learning"},{"key":"5496_CR4","doi-asserted-by":"crossref","unstructured":"Charikar, M. (2002). Similarity estimation techniques from rounding algorithm. In: ACM symposium on theory of computing (pp. 380\u2013388).","DOI":"10.1145\/509907.509965"},{"key":"5496_CR5","doi-asserted-by":"crossref","unstructured":"Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. (2004). Locality-sensitive hashing scheme based on p-stable distributions. In: SCG (pp. 253\u2013262).","DOI":"10.1145\/997817.997857"},{"key":"5496_CR6","doi-asserted-by":"crossref","unstructured":"Fern, X., & Brodley, C. (2004). Solving cluster ensemble problems by bipartite graph partitioning. In: international conference on machine learning (ICML).","DOI":"10.1145\/1015330.1015414"},{"key":"5496_CR7","doi-asserted-by":"crossref","unstructured":"Fred, A., & Jain, A. (2005). Combining multiple clusterings using evidence accumulation. IEEE transactions on pattern analysis and machine intelligence pp. 835\u2013850.","DOI":"10.1109\/TPAMI.2005.113"},{"key":"5496_CR8","unstructured":"Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In: international conference on machine learning (ICML)."},{"issue":"3","key":"5496_CR9","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1145\/355744.355745","volume":"3","author":"J Friedman","year":"1977","unstructured":"Friedman, J., Bentley, J., & Finkel, R. (1977). An algorithm for finding best matches in logarithmic expected time. TOMS, 3(3), 209\u2013226.","journal-title":"TOMS"},{"issue":"12","key":"5496_CR10","doi-asserted-by":"crossref","first-page":"2916","DOI":"10.1109\/TPAMI.2012.193","volume":"35","author":"Y Gong","year":"2013","unstructured":"Gong, Y., Lazebnik, S., Gordo, A., & Perronnin, F. (2013). Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12), 2916\u20132929.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"5496_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Wen, F., & Sun, J. (2013). K-means hashing: An affinity-preserving quantization method for learning binary compact codes. In: IEEE international conference on computer vision and pattern recognition (CVPR). IEEE.","DOI":"10.1109\/CVPR.2013.378"},{"key":"5496_CR12","unstructured":"Heo, J.P., Lee, Y., He, J., Chang, S.F., & Yoon, S.E. (2012). Spherical hashing. In: IEEE international conference on computer vision and pattern recognition (CVPR). IEEE."},{"key":"5496_CR13","doi-asserted-by":"crossref","unstructured":"Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimensionality. In: ACM symposium on theory of computing (STOC) (pp. 604\u2013613).","DOI":"10.1145\/276698.276876"},{"key":"5496_CR14","doi-asserted-by":"crossref","unstructured":"Jain, P., Kulis, B., & Grauman, K. (2008). Fast image search for learned metrics. In: IEEE international conference on computer vision and pattern recognition (CVPR).","DOI":"10.1109\/CVPR.2008.4587841"},{"key":"5496_CR15","unstructured":"Kong, W., & Li, W. (2012). Isotropic hashing. In: advances in neural information processing systems (NIPS)."},{"key":"5496_CR16","doi-asserted-by":"crossref","DOI":"10.4135\/9781412985130","volume-title":"Multidimensional scaling","author":"JB Kruskal","year":"1978","unstructured":"Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling (Vol. 11). New York: Sage."},{"key":"5496_CR17","unstructured":"Kulis, B., & Darrell, T. (2009). Learning to hash with binary reconstructive embeddings. In: advances in neural information processing systems (NIPS)."},{"key":"5496_CR18","doi-asserted-by":"crossref","unstructured":"Kulis, B., & Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable image search. In: IEEE international conference on computer vision (ICCV).","DOI":"10.1109\/ICCV.2009.5459466"},{"key":"5496_CR19","unstructured":"Li, T., & Ding, C. (2008). Weighted consensu clustering. In: SDM."},{"key":"5496_CR20","doi-asserted-by":"crossref","unstructured":"Li, T., Ding, C., & Jordan, M.I. (2007). Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In: IEEE international conference on data mining (ICDM).","DOI":"10.1109\/ICDM.2007.98"},{"key":"5496_CR21","doi-asserted-by":"crossref","unstructured":"Lin, G., Shen, C., Suter, D., & Hengel, A.v.d. (2013). A general two-step approach to learning-based hashing. In: IEEE international conference on computer vision (ICCV).","DOI":"10.1109\/ICCV.2013.317"},{"key":"5496_CR22","unstructured":"Liu, W., Wang, J., Ji, R., Jiang, Y., & Chang, S. (2012). Supervised hashing with kernels. In: IEEE international conference on computer vision and pattern recognition (CVPR)."},{"key":"5496_CR23","unstructured":"Liu, W., Wang, J., Kumar, S., & Chang, S. (2011). Hashing with graphs. In: international conference on machine learning (ICML)."},{"issue":"2","key":"5496_CR24","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1016\/j.patcog.2013.08.022","volume":"47","author":"X Liu","year":"2014","unstructured":"Liu, X., He, J., & Lang, B. (2014). Multiple feature kernel hashing for large-scale visual search. Pattern Recognition, 47(2), 748\u2013757.","journal-title":"Pattern Recognition"},{"issue":"1\u20132","key":"5496_CR25","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/A:1023949509487","volume":"52","author":"S Monti","year":"2003","unstructured":"Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning, 52(1\u20132), 91\u2013118.","journal-title":"Machine Learning"},{"key":"5496_CR26","unstructured":"Norouzi, M., & Fleet, D.J. (2011). Minimal loss hashing for compact binary codes. In: international conference on machine learning (ICML)."},{"key":"5496_CR27","doi-asserted-by":"crossref","unstructured":"Norouzi, M., Punjani, A., & Fleet, D. (2014). Fast exact search in hamming space with multi-index hashing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1107\u20131119.","DOI":"10.1109\/TPAMI.2013.231"},{"issue":"3","key":"5496_CR28","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1023\/A:1011139631724","volume":"42","author":"A Oliva","year":"2001","unstructured":"Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145\u2013175.","journal-title":"International Journal of Computer Vision"},{"issue":"2","key":"5496_CR29","first-page":"197","volume":"5","author":"RE Schapire","year":"1990","unstructured":"Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197\u2013227.","journal-title":"Machine Learning"},{"issue":"1","key":"5496_CR30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/BF02289451","volume":"31","author":"PH Sch\u00f6nemann","year":"1966","unstructured":"Sch\u00f6nemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1), 1\u201310.","journal-title":"Psychometrika"},{"key":"5496_CR31","doi-asserted-by":"crossref","unstructured":"Silpa-Anan, C., & Hartley, R. (2008). Optimised kd-trees for fast image descriptor matching. In: IEEE conference on computer vision and pattern recognition.","DOI":"10.1109\/CVPR.2008.4587638"},{"key":"5496_CR32","doi-asserted-by":"crossref","unstructured":"Song, J., Yang, Y., Huang, Z., Shen, H.T., & Hong, R. (2011). Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: proceedings of the 19th ACM international conference on multimedia (pp. 423\u2013432). ACM.","DOI":"10.1145\/2072298.2072354"},{"issue":"12","key":"5496_CR33","doi-asserted-by":"crossref","first-page":"2393","DOI":"10.1109\/TPAMI.2012.48","volume":"34","author":"J Wang","year":"2012","unstructured":"Wang, J., Kumar, S., & Chang, S. (2012). Semi-supervised hashing for large-scale search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(12), 2393\u20132406.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"5496_CR34","unstructured":"Weiss, Y., Torralba, A., & Fergus, R. (2008). Spectral hashing. In: advances in neural information processing systems (NIPS)."},{"key":"5496_CR35","unstructured":"Williams, C., & Seeger, M. (2001). Using the nystr\u00f6m method to speed up kernel machines. In: advances in neural information processing systems 13. Citeseer."},{"key":"5496_CR36","doi-asserted-by":"crossref","unstructured":"Xia, H., Wu, P., S.C.Hoi, & Jin, R. (2012). Boosting multi-kernel locality-sensitive hashing for scalable image retrieval. In: proceedings of ACM SIGIR conference (SIGIR).","DOI":"10.1145\/2348283.2348294"},{"key":"5496_CR37","doi-asserted-by":"crossref","unstructured":"Zhang, D., Wang, F., & Si, L. (2011). Composite hashing with multiple information sources. In: proceedings of ACM SIGIR conference (SIGIR).","DOI":"10.1145\/2009916.2009950"},{"key":"5496_CR38","doi-asserted-by":"crossref","DOI":"10.1201\/b12207","volume-title":"Ensemble methods: Foundations and algorithms","author":"ZH Zhou","year":"2012","unstructured":"Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. Florida: CRC Press."}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5496-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5496-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5496-x","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,24]],"date-time":"2019-08-24T10:47:18Z","timestamp":1566643638000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5496-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,5,5]]},"references-count":38,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5496"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5496-x","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,5,5]]}}}