{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T04:08:16Z","timestamp":1691554096092},"reference-count":26,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,3,21]],"date-time":"2015-03-21T00:00:00Z","timestamp":1426896000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5491-2","type":"journal-article","created":{"date-parts":[[2015,3,20]],"date-time":"2015-03-20T18:36:10Z","timestamp":1426876570000},"page":"305-332","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Soft-max boosting"],"prefix":"10.1007","volume":"100","author":[{"given":"Matthieu","family":"Geist","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,3,21]]},"reference":[{"issue":"473","key":"5491_CR1","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1198\/016214505000000907","volume":"101","author":"PL Bartlett","year":"2006","unstructured":"Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138\u2013156.","journal-title":"Journal of the American Statistical Association"},{"key":"5491_CR2","unstructured":"Beijbom, O., Saberian, M., Kriegman, D., & Vasconcelos, N. (2014). Guess-averse loss functions For cost-sensitive multiclass boosting. In International conference on machine learning (ICML), pp. 586\u2013594."},{"key":"5491_CR3","volume-title":"Classification and regression trees","author":"L Breiman","year":"1984","unstructured":"Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton: CRC Press."},{"issue":"2","key":"5491_CR4","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1006\/inco.1995.1136","volume":"121","author":"Y Freund","year":"1995","unstructured":"Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256\u2013285.","journal-title":"Information and Computation"},{"issue":"3","key":"5491_CR5","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1010852229904","volume":"43","author":"Y Freund","year":"2001","unstructured":"Freund, Y. (2001). An adaptive version of the boost by majority algorithm. Machine Learning, 43(3), 293\u2013318.","journal-title":"Machine Learning"},{"issue":"1","key":"5491_CR6","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund, Y., & Schapire, R. E. (1997). A desicion-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119\u2013139.","journal-title":"Journal of Computer and System Sciences"},{"issue":"2","key":"5491_CR7","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1214\/aos\/1016218223","volume":"28","author":"J Friedman","year":"2000","unstructured":"Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28(2), 337\u2013407.","journal-title":"The Annals of Statistics"},{"issue":"4","key":"5491_CR8","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/S0167-9473(01)00065-2","volume":"38","author":"JH Friedman","year":"2002","unstructured":"Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367\u2013378.","journal-title":"Computational Statistics & Data Analysis"},{"key":"5491_CR9","unstructured":"Grubb, A., & Bagnell, J. A. (2011). Generalized boosting algorithms for convex optimization. In International conference on machine learning (ICML)."},{"key":"5491_CR10","unstructured":"Guyon, I. (2003). Design of experiments of the nips 2003 variable selection benchmark. In NIPS 2003 workshop on feature extraction and feature selection."},{"key":"5491_CR11","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.jcss.2004.10.015","volume":"71","author":"AT Kalaia","year":"2005","unstructured":"Kalaia, A. T., & Servediob, R. A. (2005). Boosting in the presence of noise. Journal of Computer and System Sciences, 71, 266\u2013290.","journal-title":"Journal of Computer and System Sciences"},{"key":"5491_CR12","doi-asserted-by":"crossref","unstructured":"K\u00e9gl, B., & Busa-Fekete, R. (2009). Boosting products of base classifiers. In International conference on machine learning (ICML) (pp. 497\u2013504). New York: ACM.","DOI":"10.1145\/1553374.1553439"},{"key":"5491_CR13","unstructured":"K\u00e9gl, B. (2014). The return of AdaBoost.MH: multi-class Hamming trees. In International conference on learning representations (ICLR)."},{"issue":"465","key":"5491_CR14","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1198\/016214504000000098","volume":"99","author":"Y Lee","year":"2004","unstructured":"Lee, Y., Lin, Y., & Wahba, G. (2004). Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association, 99(465), 67\u201381.","journal-title":"Journal of the American Statistical Association"},{"key":"5491_CR15","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1007\/11503415_6","volume-title":"Conference on learning theory (COLT)","author":"PM Long","year":"2005","unstructured":"Long, P. M., & Servedio, R. A. (2005). Martingale boosting. Conference on learning theory (COLT) (pp. 79\u201394). Berlin: Springer."},{"issue":"3","key":"5491_CR16","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s10994-009-5165-z","volume":"78","author":"PM Long","year":"2010","unstructured":"Long, P. M., & Servedio, R. A. (2010). Random classification noise defeats all convex potential boosters. Machine Learning, 78(3), 287\u2013304.","journal-title":"Machine Learning"},{"key":"5491_CR17","unstructured":"Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. Tech. rep., Australian National University."},{"key":"5491_CR18","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4419-8853-9","volume-title":"Introductory lectures on convex optimization: A basic course","author":"Y Nesterov","year":"2004","unstructured":"Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course. Berlin: Springer."},{"key":"5491_CR19","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825\u20132830.","journal-title":"Journal of Machine Learning Research"},{"key":"5491_CR20","unstructured":"Pires, B. A., Ghavamzadeh, M., & Szepesv\u00e1ri, C. (2013). Cost-sensitive multiclass classification risk bounds. In International conference on machine learning (ICML)."},{"key":"5491_CR21","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/8291.001.0001","volume-title":"Boosting: Foundations and algorithms","author":"RE Schapire","year":"2012","unstructured":"Schapire, R. E., & Freund, Y. (2012). Boosting: Foundations and algorithms. Cambridge: MIT Press."},{"issue":"3","key":"5491_CR22","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1023\/A:1007614523901","volume":"37","author":"RE Schapire","year":"1999","unstructured":"Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine learning, 37(3), 297\u2013336.","journal-title":"Machine learning"},{"key":"5491_CR23","volume-title":"Learning with kernels: support vector machines, regularization, optimization, and beyond","author":"B Sch\u00f6lkopf","year":"2002","unstructured":"Sch\u00f6lkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press."},{"issue":"2","key":"5491_CR24","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1007\/s00365-006-0662-3","volume":"26","author":"I Steinwart","year":"2007","unstructured":"Steinwart, I. (2007). How to compare different loss functions and their risks. Constructive Approximation, 26(2), 225\u2013287.","journal-title":"Constructive Approximation"},{"key":"5491_CR25","first-page":"1225","volume":"5","author":"T Zhang","year":"2004","unstructured":"Zhang, T. (2004). Statistical analysis of some multi-category large margin classification methods. The Journal of Machine Learning Research, 5, 1225\u20131251.","journal-title":"The Journal of Machine Learning Research"},{"key":"5491_CR26","first-page":"249","volume":"2","author":"J Zhu","year":"2009","unstructured":"Zhu, J., Zou, H., Rosset, S., & Hastie, T. (2009). Multi-class adaBoost. Statistics and its Interface, 2, 249\u2013360.","journal-title":"Statistics and its Interface"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5491-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5491-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5491-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,8]],"date-time":"2023-08-08T22:44:11Z","timestamp":1691534651000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5491-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,3,21]]},"references-count":26,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5491"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5491-2","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,3,21]]}}}