{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,8]],"date-time":"2024-06-08T20:40:41Z","timestamp":1717879241368},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2015,5,5]],"date-time":"2015-05-05T00:00:00Z","timestamp":1430784000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1007\/s10994-015-5483-2","type":"journal-article","created":{"date-parts":[[2015,5,4]],"date-time":"2015-05-04T20:11:56Z","timestamp":1430770316000},"page":"217-254","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Learning relational dependency networks in hybrid domains"],"prefix":"10.1007","volume":"100","author":[{"given":"Irma","family":"Ravkic","sequence":"first","affiliation":[]},{"given":"Jan","family":"Ramon","sequence":"additional","affiliation":[]},{"given":"Jesse","family":"Davis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,5,5]]},"reference":[{"key":"5483_CR1","unstructured":"Berka, P. (1999). PKDD\u201999 Discovery challenge: http:\/\/lisp.vse.cz\/pkdd99\/Challenge\/ ."},{"key":"5483_CR2","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1111\/j.2517-6161.1974.tb00999.x","volume":"36","author":"J Besag","year":"1974","unstructured":"Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society Series B (Methodological), 36, 192\u2013236.","journal-title":"Journal of the Royal Statistical Society Series B (Methodological)"},{"key":"5483_CR3","doi-asserted-by":"crossref","DOI":"10.1093\/oso\/9780198538493.001.0001","volume-title":"Neural networks for pattern recognition","author":"CM Bishop","year":"1995","unstructured":"Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY, USA: Oxford University Press Inc."},{"key":"5483_CR4","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/S0004-3702(98)00034-4","volume":"101","author":"H Blockeel","year":"1998","unstructured":"Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial Intelligence, 101, 285\u2013297.","journal-title":"Artificial Intelligence"},{"key":"5483_CR5","unstructured":"Choi, J., Amir, E., Hill, D.J. (2010). Lifted inference for relational continuous models. In: UAI\u201910: Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence, pp. 126\u2013134."},{"key":"5483_CR6","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/978-3-540-68996-6_4","volume-title":"Advances in probabilistic graphical models","author":"B Cobb","year":"2007","unstructured":"Cobb, B., Rum\u00ed, R., & Salmer\u00f3n, A. (2007). Bayesian network models with discrete and continuous variables. Advances in probabilistic graphical models (Vol. 214, pp. 81\u2013102). Berlin, Heidelberg: Springer."},{"key":"5483_CR7","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1093\/biostatistics\/kxp018","volume":"10","author":"A Dobra","year":"2009","unstructured":"Dobra, A. (2009). Variable selection and dependency networks for genomewide data. Biostatistics (Oxford, England), 10, 621\u2013639.","journal-title":"Biostatistics (Oxford, England)"},{"key":"5483_CR8","unstructured":"Domingos, P., & Provost, F. (2000). Well-trained PETs: Improving probability estimation trees. CDER Working Paper, Stern School of Business. New York, NY: New York University."},{"key":"5483_CR9","doi-asserted-by":"crossref","unstructured":"Fierens, D., Blockeel, H., Bruynooghe, M., & Ramon, J. (2005). Logical Bayesian networks and their relation to other probabilistic logical models. In: Proceedings of the 15th international conference on inductive logic programming, (Vol. 3625, pp. 121\u2013135) Berlin: Springer.","DOI":"10.1007\/11536314_8"},{"key":"5483_CR10","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/7432.001.0001","volume-title":"Introduction to statistical relational learning","author":"L Getoor","year":"2007","unstructured":"Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. Cambridge: The MIT press."},{"key":"5483_CR11","doi-asserted-by":"crossref","unstructured":"Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001) Learning probabilistic relational models. In: Relational Data Mining. Springer, Berlin.","DOI":"10.1007\/978-3-662-04599-2_13"},{"key":"5483_CR12","unstructured":"Guo, Y., & Gu, S. (2011). Multi-label classification using conditional dependency networks. In: Proceedings of the twenty-second international joint conference on artificial intelligence, IJCAI\u201911 ( Vol. 2, pp. 1300\u20131305)."},{"key":"5483_CR13","doi-asserted-by":"crossref","unstructured":"Gutmann, B., Jaeger, M., & De Raedt, L. (2011). Extending ProbLog with continuous distributions. In: Inductive Logic Programming (pp. 76\u201391) Berlin: Springer.","DOI":"10.1007\/978-3-642-21295-6_12"},{"key":"5483_CR14","doi-asserted-by":"crossref","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1).","DOI":"10.1145\/1656274.1656278"},{"key":"5483_CR15","unstructured":"Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., & Kadie, C. (2001). Dependency networks for inference, collaborative filtering, and data visualization. Journal ofMachine LearningResearch, 49\u201375."},{"key":"5483_CR16","doi-asserted-by":"crossref","unstructured":"Kersting, K., & De Raedt, L. (2001). Adaptive Bayesian logic programs. In: Inductive Logic Programming (pp. 104\u2013117). Berlin: Springer.","DOI":"10.1007\/3-540-44797-0_9"},{"key":"5483_CR17","doi-asserted-by":"crossref","unstructured":"Kok, S., & Domingos, P. (2005). Learning the Structure of Markov Logic Networks. In: Proceedings of the 22Nd international conference on machine learning, ICML \u201905, pp. 441\u2013448.","DOI":"10.1145\/1102351.1102407"},{"key":"5483_CR18","unstructured":"Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp. 551\u2013558."},{"key":"5483_CR19","unstructured":"Koller, D., Lerner, U., & Angelov, D. (1999). A general algorithm for approximate inference and its application to hybrid Bayes nets. In: Proceedings of the fifteenth conference on uncertainty in artificial intelligence, pp. 324\u2013333."},{"key":"5483_CR20","doi-asserted-by":"crossref","unstructured":"Ku\u017eelka, O., Szab\u00f3ov\u00e1, A., Holec, M., & \u017delezn\u00fd, F. (2011). Gaussian logic for predictive classification. Machine learning and knowledge discovery in databases, Lecture Notes in Computer Science (Vol. 6912, pp. 277\u2013292). Berlin, Heidelberg: Springer.","DOI":"10.1007\/978-3-642-23783-6_18"},{"key":"5483_CR21","doi-asserted-by":"crossref","first-page":"1098","DOI":"10.1080\/01621459.1992.10476265","volume":"87","author":"SL Lauritzen","year":"1992","unstructured":"Lauritzen, S. L. (1992). Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association, 87, 1098\u20131108.","journal-title":"Journal of the American Statistical Association"},{"key":"5483_CR22","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1023\/A:1008935617754","volume":"11","author":"SL Lauritzen","year":"2001","unstructured":"Lauritzen, S. L., & Jensen, F. (2001). Stable local computation with conditional Gaussian distributions. Statistics and Computing, 11, 191\u2013203.","journal-title":"Statistics and Computing"},{"key":"5483_CR23","doi-asserted-by":"crossref","first-page":"1436","DOI":"10.1214\/009053606000000281","volume":"34","author":"N Meinshausen","year":"2006","unstructured":"Meinshausen, N., & B\u00fchlmann, P. (2006). High dimensional graphs and variable selection with the Lasso. Annals of statistics, 34, 1436\u20131462.","journal-title":"Annals of statistics"},{"key":"5483_CR24","volume-title":"Machine learning","author":"TM Mitchell","year":"1997","unstructured":"Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill."},{"key":"5483_CR25","doi-asserted-by":"crossref","unstructured":"Moral, S., Rumi, R., & Salmer\u00f3n, A. (2001). Mixtures of truncated exponentials in hybrid Bayesian networks. Symbolic and quantitative approaches to reasoning with uncertainty, Lecture Notes in Computer Science (Vol. 2143, pp. 156\u2013167). Berlin, Heidelberg: Springer.","DOI":"10.1007\/3-540-44652-4_15"},{"key":"5483_CR26","unstructured":"Murphy, K.P. (1998). Inference and learning in hybrid Bayesian networks. Tech. Rept. UCB\/CSD-98-990, U.C. Berkeley, CA."},{"key":"5483_CR27","doi-asserted-by":"crossref","unstructured":"Narman, P., Buschle, M., Konig, J., & Johnson, P. (2010). Hybrid probabilistic relational models for system quality analysis. In: Proceedings of the 2010 14th IEEE international enterprise distributed object computing conference, pp. 57\u201366.","DOI":"10.1109\/EDOC.2010.29"},{"key":"5483_CR28","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/s10994-011-5244-9","volume":"86","author":"S Natarajan","year":"2012","unstructured":"Natarajan, S., Khot, T., Kersting, K., Gutmann, B., & Shavlik, J. (2012). Gradient-based boosting for statistical relational learning: The relational dependency network case. Machine Learning, 86, 25\u201356.","journal-title":"Machine Learning"},{"key":"5483_CR29","unstructured":"Neville, J., & Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning Research."},{"key":"5483_CR30","doi-asserted-by":"crossref","unstructured":"Neville, J., Jensen, D., Friedland, L., & Hay, M. (2003). Learning relational probability trees. In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining, ACM Press, pp. 625\u2013630.","DOI":"10.1145\/956750.956830"},{"key":"5483_CR31","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1007\/s10994-006-5833-1","volume":"62","author":"M Richardson","year":"2006","unstructured":"Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62, 107\u2013136.","journal-title":"Machine learning"},{"key":"5483_CR32","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.ijar.2005.10.004","volume":"42","author":"V Romero","year":"2006","unstructured":"Romero, V., Rum\u00ed, R., & Salmer\u00f3n, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42, 54\u201368.","journal-title":"International Journal of Approximate Reasoning"},{"key":"5483_CR33","doi-asserted-by":"crossref","unstructured":"Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461\u2013464.","DOI":"10.1214\/aos\/1176344136"},{"key":"5483_CR34","unstructured":"Teso, S., Sebastiani, R., & Passerini, A. (2013). Hybrid SRL with optimization modulo theories. In 2013 NIPS Workshop on Constructive Machine Learning. Lake Tahoe, Nevada, USA."},{"key":"5483_CR35","unstructured":"Wang, J., & Domingos, P. (2008). Hybrid Markov logic networks. In: Proceedings of the 23rd national conference on Artificial intelligence, Vol. 2, pp. 1106\u20131111."},{"key":"5483_CR36","unstructured":"Yuan, C., & Druzdzel, M.J. (2007). Importance sampling for general hybrid Bayesian networks. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07), Journal of Machine Learning Research - Proceedings Track, vol 2, pp. 652\u2013659."}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5483-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-015-5483-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-015-5483-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,8]],"date-time":"2024-06-08T19:59:45Z","timestamp":1717876785000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-015-5483-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,5,5]]},"references-count":36,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2015,9]]}},"alternative-id":["5483"],"URL":"https:\/\/doi.org\/10.1007\/s10994-015-5483-2","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,5,5]]}}}