{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,14]],"date-time":"2024-05-14T13:21:46Z","timestamp":1715692906622},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2016,1,19]],"date-time":"2016-01-19T00:00:00Z","timestamp":1453161600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Optim Theory Appl"],"published-print":{"date-parts":[[2017,7]]},"DOI":"10.1007\/s10957-016-0864-7","type":"journal-article","created":{"date-parts":[[2016,1,19]],"date-time":"2016-01-19T16:01:06Z","timestamp":1453219266000},"page":"210-222","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Homoclinic Orbits for a Class of Fractional Hamiltonian Systems via Variational Methods"],"prefix":"10.1007","volume":"174","author":[{"given":"Nemat","family":"Nyamoradi","sequence":"first","affiliation":[]},{"given":"Yong","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,1,19]]},"reference":[{"key":"864_CR1","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1017\/S0308210500024240","volume":"114","author":"PH Rabinowitz","year":"1990","unstructured":"Rabinowitz, P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. Sect. A 114, 33\u201338 (1990)","journal-title":"Proc. R. Soc. Edinb. Sect. A"},{"key":"864_CR2","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1007\/PL00009909","volume":"12","author":"E Paturel","year":"2001","unstructured":"Paturel, E.: Multiple homoclinic orbits for a class of Hamiltonian systems. Calc. Var. Partial Differ. Equ. 12, 117\u2013143 (2001)","journal-title":"Calc. Var. Partial Differ. Equ."},{"key":"864_CR3","first-page":"177","volume":"89","author":"A Ambrosetti","year":"1993","unstructured":"Ambrosetti, A., Coti Zelati, V.: Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. Padova 89, 177\u2013194 (1993)","journal-title":"Rend. Sem. Mat. Univ. Padova"},{"key":"864_CR4","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/S0022-0396(02)00005-0","volume":"186","author":"W Zou","year":"2002","unstructured":"Zou, W., Li, S.J.: Infinitely many solutions for Hamiltonian systems. J. Differ. Equ. 186, 141\u2013164 (2002)","journal-title":"J. Differ. Equ."},{"key":"864_CR5","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/j.jde.2007.03.005","volume":"237","author":"Y Ding","year":"2007","unstructured":"Ding, Y., Jeanjean, L.: Homoclinic orbits for a nonperiodic Hamiltonian system. J. Differ. Equ. 237, 473\u2013490 (2007)","journal-title":"J. Differ. Equ."},{"key":"864_CR6","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1007\/s10884-012-9275-0","volume":"24","author":"PD Makita","year":"2012","unstructured":"Makita, P.D.: Homoclinic orbits for second order Hamiltonian equations in R. J. Dyn. Differ. Equ. 24, 857\u2013871 (2012)","journal-title":"J. Dyn. Differ. Equ."},{"key":"864_CR7","first-page":"1115","volume":"5","author":"W Omana","year":"1992","unstructured":"Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integr. Equ. 5, 1115\u20131120 (1992)","journal-title":"Differ. Integr. Equ."},{"key":"864_CR8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0370-1573(00)00070-3","volume":"339","author":"R Metzler","year":"2000","unstructured":"Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1\u201377 (2000)","journal-title":"Phys. Rep."},{"key":"864_CR9","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1016\/S0370-1573(02)00331-9","volume":"371","author":"GM Zaslavsky","year":"2002","unstructured":"Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461\u2013580 (2002)","journal-title":"Phys. Rep."},{"key":"864_CR10","doi-asserted-by":"crossref","DOI":"10.1142\/3779","volume-title":"Applications of Fractional Calculus in Physics","author":"R Hilfer","year":"2000","unstructured":"Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)"},{"key":"864_CR11","doi-asserted-by":"crossref","DOI":"10.1142\/9069","volume-title":"Basic Theory of Fractional Differential Equations","author":"Y Zhou","year":"2014","unstructured":"Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)"},{"key":"864_CR12","volume-title":"Theory and Applications of Fractional Differential Equations","author":"AA Kilbas","year":"2006","unstructured":"Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)"},{"key":"864_CR13","volume-title":"Theory of Fractional Dynamic Systems","author":"V Lakshmikantham","year":"2009","unstructured":"Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)"},{"key":"864_CR14","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-14003-7","volume-title":"Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media","author":"VE Tarasov","year":"2010","unstructured":"Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)"},{"key":"864_CR15","doi-asserted-by":"crossref","DOI":"10.1142\/p871","volume-title":"Introduction to the Fractional Calculus of Variations","author":"AB Malinowska","year":"2012","unstructured":"Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imp. Coll. Press, London (2012)"},{"issue":"1","key":"864_CR16","first-page":"119","volume":"42","author":"Y Zhou","year":"2013","unstructured":"Zhou, Y., Jiao, F., Pecaric, J.: Abstract Cauchy problem for fractional functional differential equations. Topol. Methods Nonlinear Anal. 42(1), 119\u2013136 (2013)","journal-title":"Topol. Methods Nonlinear Anal."},{"key":"864_CR17","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1216\/JIE-2013-25-4-557","volume":"25","author":"Y Zhou","year":"2013","unstructured":"Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolutions. J. Integr. Equ. Appl. 25, 557\u2013586 (2013)","journal-title":"J. Integr. Equ. Appl."},{"key":"864_CR18","doi-asserted-by":"crossref","first-page":"507","DOI":"10.3934\/eect.2015.4.507","volume":"4","author":"Y Zhou","year":"2015","unstructured":"Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4, 507\u2013524 (2015)","journal-title":"Evol. Equ. Control Theory"},{"issue":"1","key":"864_CR19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10957-013-0271-2","volume":"156","author":"Y Zhou","year":"2013","unstructured":"Zhou, Y.: Control and optimization of fractional systems. J. Optim. Theory Appl. 156(1), 1\u2013182 (2013)","journal-title":"J. Optim. Theory Appl."},{"key":"864_CR20","first-page":"1747","volume":"222","author":"Y Zhou","year":"2013","unstructured":"Zhou, Y., Shen, X.H., Zhang, L.: Cauchy problem for fractional evolution equations with Caputo derivative. Eur. Phys. J. Spec. Top. 222, 1747\u20131764 (2013)","journal-title":"Eur. Phys. J. Spec. Top."},{"key":"864_CR21","doi-asserted-by":"crossref","first-page":"1890","DOI":"10.1103\/PhysRevE.53.1890","volume":"53","author":"F Riewe","year":"1996","unstructured":"Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rep. E 53, 1890\u20131899 (1996)","journal-title":"Phys. Rep. E"},{"key":"864_CR22","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.1023\/A:1021389004982","volume":"52","author":"M Klimek","year":"2002","unstructured":"Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247\u20131253 (2002)","journal-title":"Czechoslov. J. Phys."},{"key":"864_CR23","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/S0022-247X(02)00180-4","volume":"272","author":"OP Agrawal","year":"2002","unstructured":"Agrawal, O.P.: Formulation of Euler\u2013Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368\u2013379 (2002)","journal-title":"J. Math. Anal. Appl."},{"key":"864_CR24","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1016\/j.jmaa.2006.04.076","volume":"327","author":"EM Rabei","year":"2007","unstructured":"Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891\u2013897 (2007)","journal-title":"J. Math. Anal. Appl."},{"key":"864_CR25","doi-asserted-by":"crossref","first-page":"2558","DOI":"10.1007\/s10773-009-0042-x","volume":"48","author":"D Baleanu","year":"2009","unstructured":"Baleanu, D., Golmankaneh, A.K.: The dual action of fractional multi time Hamilton equations. Int. J. Theor. Phys. 48, 2558\u20132569 (2009)","journal-title":"Int. J. Theor. Phys."},{"key":"864_CR26","first-page":"1","volume":"259","author":"C Torres","year":"2013","unstructured":"Torres, C.: Existence of solution for a class of fractional Hamiltonian systems. Electron. J. Differ. Equ. 259, 1\u201312 (2013)","journal-title":"Electron. J. Differ. Equ."},{"key":"864_CR27","doi-asserted-by":"crossref","first-page":"5929","DOI":"10.1088\/0305-4470\/38\/26\/007","volume":"38","author":"VE Tarasov","year":"2005","unstructured":"Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. Gen. 38, 5929\u20135943 (2005)","journal-title":"J. Phys. A Math. Gen."},{"issue":"4","key":"864_CR28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1142\/S0218127412500861","volume":"22","author":"F Jiao","year":"2012","unstructured":"Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1\u201317 (2012)","journal-title":"Int. J. Bifurc. Chaos"},{"key":"864_CR29","doi-asserted-by":"crossref","DOI":"10.1090\/cbms\/065","volume-title":"Minimax Methods in Critical Point Theory with Applications to Differential Equations","author":"PH Rabinowitz","year":"1986","unstructured":"Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society, Providence (1986)"},{"key":"864_CR30","unstructured":"Stuart, C.: Bifurcation into Spectral Gaps. Soci\u00e9t\u00e9 Math\u00e9matique de Belgique (1995)"},{"issue":"5","key":"864_CR31","first-page":"1115","volume":"5","author":"W Omana","year":"1992","unstructured":"Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integr. Equ. 5(5), 1115\u20131120 (1992)","journal-title":"Differ. Integr. Equ."}],"container-title":["Journal of Optimization Theory and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10957-016-0864-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10957-016-0864-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10957-016-0864-7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10957-016-0864-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,2]],"date-time":"2019-06-02T05:58:46Z","timestamp":1559455126000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10957-016-0864-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,1,19]]},"references-count":31,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2017,7]]}},"alternative-id":["864"],"URL":"https:\/\/doi.org\/10.1007\/s10957-016-0864-7","relation":{},"ISSN":["0022-3239","1573-2878"],"issn-type":[{"value":"0022-3239","type":"print"},{"value":"1573-2878","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,1,19]]}}}