{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,23]],"date-time":"2023-11-23T07:02:46Z","timestamp":1700722966950},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2015,11,14]],"date-time":"2015-11-14T00:00:00Z","timestamp":1447459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Med Syst"],"published-print":{"date-parts":[[2016,1]]},"DOI":"10.1007\/s10916-015-0367-3","type":"journal-article","created":{"date-parts":[[2015,11,14]],"date-time":"2015-11-14T06:28:40Z","timestamp":1447482520000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Diagnosis of Brain Metastases from Lung Cancer Using a Modified Electromagnetism like Mechanism Algorithm"],"prefix":"10.1007","volume":"40","author":[{"given":"Kun-Huang","family":"Chen","sequence":"first","affiliation":[]},{"given":"Kung-Jeng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Angelia Melani","family":"Adrian","sequence":"additional","affiliation":[]},{"given":"Kung-Min","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Nai-Chia","family":"Teng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,11,14]]},"reference":[{"issue":"4","key":"367_CR1","doi-asserted-by":"crossref","first-page":"2100","DOI":"10.3390\/cancers2042100","volume":"2","author":"A Chi","year":"2010","unstructured":"Chi, A., and Komaki, R., Treatment of brain metastasis from lung cancer. Cancers 2(4):2100\u20132137, 2010.","journal-title":"Cancers"},{"issue":"10","key":"367_CR2","doi-asserted-by":"crossref","first-page":"2698","DOI":"10.1002\/cncr.10541","volume":"94","author":"LJ Schouten","year":"2002","unstructured":"Schouten, L. J., Rutten, J., Huveneers, H. A., and Twijnstra, A., Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94(10):2698\u2013705, 2002.","journal-title":"Cancer"},{"issue":"11","key":"367_CR3","doi-asserted-by":"crossref","first-page":"1919","DOI":"10.1038\/sj.bjc.6605373","volume":"101","author":"KE Smedby","year":"2009","unstructured":"Smedby, K. E., Brandt, L., B\u00e4cklund, M. L., and Blomqvist, P., Brain metastases admissions in Sweden between 1987 and 2006. Br. J. Cancer 101(11):1919\u20131924, 2009.","journal-title":"Br. J. Cancer"},{"issue":"3","key":"367_CR4","first-page":"114","volume":"2","author":"N Karachaliou","year":"2013","unstructured":"Karachaliou, N., and Rosell, R., Treatment of brain metastases in non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations: the role of EGFR tyrosine kinase inhibitors. Ann. Palliat. Med. 2(3):114\u2013117, 2013.","journal-title":"Ann. Palliat. Med."},{"key":"367_CR5","doi-asserted-by":"crossref","unstructured":"Tseng, WT., et al. The Application of Data Mining Techniques to Oral Cancer Prognosis. Journal of medical system. 39(5): 2015.","DOI":"10.1007\/s10916-015-0241-3"},{"key":"367_CR6","doi-asserted-by":"crossref","unstructured":"Lu, HY., et al. Predicting Long-Term Outcome After Traumatic Brain Injury Using Repeated Measurements of Glasgow Coma Scale and Data Mining Methods. Journal of medical system, 39(2): 2015.","DOI":"10.1007\/s10916-014-0187-x"},{"key":"367_CR7","doi-asserted-by":"crossref","unstructured":"Peker, M., et al. Rapid Automated Classification of Anesthetic Depth Levels using GPU Based Parallelization of Neural Networks. Journal of medical system, 39(2): 2015.","DOI":"10.1007\/s10916-015-0197-3"},{"key":"367_CR8","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1023\/A:1022452626305","volume":"25","author":"I Birbil","year":"2003","unstructured":"Birbil, I., and Fang, S. C., An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25:263\u2013282, 2003.","journal-title":"J. Glob. Optim."},{"issue":"5","key":"367_CR9","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1016\/j.ins.2010.11.008","volume":"181","author":"CT Su","year":"2011","unstructured":"Su, C. T., and Lin, H. C., Applying electromagnetism-like mechanism for feature selection. Inf. Sci. 181(5):972\u2013986, 2011.","journal-title":"Inf. Sci."},{"key":"367_CR10","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.neucom.2012.10.020","volume":"106","author":"HC Lin","year":"2013","unstructured":"Lin, H. C., and Su, C. T., A selective Bayes classifier with meta-heuristics for incomplete data. Neurocomputing 106:95\u2013102, 2013.","journal-title":"Neurocomputing"},{"issue":"2","key":"367_CR11","doi-asserted-by":"crossref","first-page":"167","DOI":"10.3233\/IDA-2012-0517","volume":"16","author":"LF Chen","year":"2012","unstructured":"Chen, L. F., Su, C. T., and Chen, K. H., An improved particle swarm optimization for feature selection. Int. Data Anal. 16(2):167\u2013182, 2012.","journal-title":"Int. Data Anal."},{"key":"367_CR12","unstructured":"Lichman, M., UCI Machine Learning Repository [ http:\/\/archive.ics.uci.edu\/ml ]. Irvine, CA: University of California, School of Information and Computer Science, 2013."},{"key":"367_CR13","unstructured":"IDA Repository [ http:\/\/ida.first.gmd.de\/~raetsch\/data\/benchmarks.htm ], 2014."},{"key":"367_CR14","unstructured":"Broad Institute TCGA Genome Data Analysis Center. Cancer Program Data Sets [ http:\/\/www.broadinstitute.org\/cgi-bin\/cancer\/datasets.cgi ]. Broad Institute of MIT and Harvard, 2013."},{"key":"367_CR15","unstructured":"Lung Cancer Microarray Dataset. [ http:\/\/datam.i2r.a-star.edu.sg\/datasets\/krbd\/index.html ], 2014."},{"key":"367_CR16","unstructured":"National Health Insurance Research Database, Taiwan. Bureau of National Health Insurance, Department of Health and managed by National Health Research Institute. [ http:\/\/nhird.nhri.org.tw\/en\/index.htm ], 2014."},{"issue":"24","key":"367_CR17","doi-asserted-by":"crossref","first-page":"13790","DOI":"10.1073\/pnas.191502998","volume":"98","author":"A Bhattacharjee","year":"2001","unstructured":"Bhattacharjee, A., et al., Classification of human lung carcinomas by mRNA expression profiling reveals Distinct adenocarcinoma subclasses. PNAS 98(24):13790\u201313795, 2001.","journal-title":"PNAS"},{"key":"367_CR18","first-page":"4963","volume":"62","author":"GJ Gordon","year":"2002","unstructured":"Gordon, G. J., et al., Translation of microarray data into clinically relevant cancer diagnostic tests using gege expression ratios in lung cancer and mesothelioma. Cancer Res. 62:4963\u20134967, 2002.","journal-title":"Cancer Res."},{"issue":"8","key":"367_CR19","doi-asserted-by":"crossref","first-page":"816","DOI":"10.1038\/nm733","volume":"8","author":"DG Beer","year":"2002","unstructured":"Beer, D. G., et al., Gene-expression Profiles Predict Survival of Patients with Lung Adenocarcinoma. Nat. Med. 8(8):816\u2013823, 2002.","journal-title":"Nat. Med."},{"key":"367_CR20","first-page":"3005","volume":"62","author":"DA Wigle","year":"2002","unstructured":"Wigle, D. A., et al., Molecular profiling of Non-small cell lung cancer and correlation with disease-free survival. Cancer Res. 62:3005\u20133008, 2002.","journal-title":"Cancer Res."},{"key":"367_CR21","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P., SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 16:321\u2013357, 2002.","journal-title":"J. Artif. Intell. Res."},{"key":"367_CR22","volume-title":"Statistical learning theory","author":"V Vapnik","year":"1998","unstructured":"Vapnik, V., Statistical learning theory. Wiley, New York, NY, 1998."},{"issue":"3","key":"367_CR23","doi-asserted-by":"crossref","first-page":"584","DOI":"10.1016\/j.patcog.2009.09.003","volume":"43","author":"MH Nguyen","year":"2010","unstructured":"Nguyen, M. H., and de la Torre, F., Optimal feature selection for support vector machines. Pattern Recogn. 43(3):584\u2013591, 2010.","journal-title":"Pattern Recogn."},{"issue":"1","key":"367_CR24","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.knosys.2010.07.003","volume":"24","author":"S Li","year":"2011","unstructured":"Li, S., Wu, H., Wan, D., and Zuu, J., An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowl.-Based Syst. 24(1):40\u201348, 2011.","journal-title":"Knowl.-Based Syst."},{"issue":"12","key":"367_CR25","doi-asserted-by":"crossref","first-page":"1513","DOI":"10.1016\/j.datak.2009.08.005","volume":"68","author":"J Hulse Van","year":"2009","unstructured":"Van Hulse, J., and Khoshgoftaar, J. T., Knowledge discovery from imbalanced and noisy data. Data Knowl. Eng. 68(12):1513\u20131542, 2009.","journal-title":"Data Knowl. Eng."},{"issue":"8","key":"367_CR26","doi-asserted-by":"crossref","first-page":"3494","DOI":"10.1016\/j.asoc.2013.03.021","volume":"13","author":"S Vieira","year":"2013","unstructured":"Vieira, S., Mendon\u00e7a, L. F., Farinha, G. J., and Sousa, J. M. C., Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. 13(8):3494\u20133504, 2013.","journal-title":"Appl. Soft Comput."},{"issue":"A","key":"367_CR27","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.asoc.2013.07.016","volume":"14","author":"M Zi\u0229ba","year":"2014","unstructured":"Zi\u0229ba, M., Tomczak, J. M., Lubicz, M., and \u015awia\u0327tek, J., Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients. Appl. Soft Comput. J. 14(A):99\u2013108, 2014.","journal-title":"Appl. Soft Comput. J."},{"issue":"3","key":"367_CR28","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.1007\/s10916-011-9660-y","volume":"36","author":"E Avci","year":"2012","unstructured":"Avci, E., A New expert system for diagnosis of lung cancer: GDA\u2014LS_SVM. J. Med. Syst. 36(3):2005\u20132009, 2012.","journal-title":"J. Med. Syst."},{"key":"367_CR29","unstructured":"Jiang, X., R. El-Kareh, L. Ohno-Machado, Improving predictions in imbalanced datavusing pairwise expanded logistic regression. Annual Symposium on Biomedical and Health Informatics (AMIA\u201901), 2001"},{"issue":"9","key":"367_CR30","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","volume":"21","author":"H He","year":"2009","unstructured":"He, H., and Garcia, E., Learning for imbalanced data IEEE Trans. Data Knowl. Eng. 21(9):1263\u20131284, 2009.","journal-title":"Data Knowl. Eng."},{"key":"367_CR31","doi-asserted-by":"crossref","first-page":"837","DOI":"10.1007\/11893028_93","volume":"4232","author":"P Kang","year":"2006","unstructured":"Kang, P., and Cho, S., Eus svms: ensemble of under-sampled svms for data imbalance problems. Neural Inf. Process. 4232:837\u2013846, 2006.","journal-title":"Neural Inf. Process."},{"issue":"124","key":"367_CR32","first-page":"2","volume":"13","author":"KJ Wang","year":"2013","unstructured":"Wang, K. J., Makond, B., and Wang, K. M., An improved survivability diagnosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data. BMC Med. Informat Decis Making 13(124):2\u201314, 2013.","journal-title":"BMC Med. Informat Decis Making"},{"key":"367_CR33","doi-asserted-by":"crossref","unstructured":"Gao, M., Hong, X., Chen, S., Harris, C., J. On combination of SMOTE and particle swarm optimization based radial basis function classifier for imbalanced problems. Proceedings of the International Joint Conference on Neural Networks. 6033353: 1146\u20131153, 2011.","DOI":"10.1109\/IJCNN.2011.6033353"},{"issue":"1","key":"367_CR34","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.eswa.2005.11.024","volume":"32","author":"K Polat","year":"2007","unstructured":"Polat, K., Sahan, S., Kodaz, H., and G\u00fcnes, S., Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Syst. Appl. 32(1):172\u2013183, 2007.","journal-title":"Expert Syst. Appl."},{"key":"367_CR35","doi-asserted-by":"crossref","unstructured":"Saidi, M., Chikh, M., Settouti, N. Automatic identification of diabetes diseases using a Modified Artificial Immune Recognition System2 (MAIRS2). Proceedings of the International Conference on Computer Science and its Applications, 20, 2011.","DOI":"10.1007\/s10916-011-9748-4"},{"key":"367_CR36","unstructured":"Werbos P., J. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis; Harvard University: 1974."},{"issue":"6088","key":"367_CR37","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning representations by back-propagating errors. Nature 323(6088):533\u2013536, 1986.","journal-title":"Nature"},{"issue":"1","key":"367_CR38","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1111\/j.1369-7625.2011.00739.x","volume":"17","author":"E Singer","year":"2014","unstructured":"Singer, E., Couper, M. P., Fagerlin, A., Van Hoewyk, J., and Zikmund-Fisher, B. J., The role of perceived benefits and costs in patients\u2019 medical decisions. Health Expect. 17(1):4\u201314, 2014.","journal-title":"Health Expect."},{"issue":"3","key":"367_CR39","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1002\/pbc.24751","volume":"61","author":"KR Greenop","year":"2014","unstructured":"Greenop, K. R., Blair, E. M., Bower, C., Armstrong, B. K., and Milne, E., Factors relating to pregnancy and birth and the risk of childhood brain tumors: Results from an Australian case\u2013control study. Pediatric Blood Cancer. 61(3):493\u2013498, 2014.","journal-title":"Pediatric Blood Cancer."},{"issue":"3","key":"367_CR40","doi-asserted-by":"crossref","first-page":"379","DOI":"10.5993\/AJHB.38.3.7","volume":"38","author":"AF Yan","year":"2014","unstructured":"Yan, A. F., Voorhees, C. C., Beck, K. H., and Wang, M. Q., A social ecological assessment of physical activity among urban adolescents. Am. J. Health Behav. 38(3):379\u2013391, 2014.","journal-title":"Am. J. Health Behav."},{"key":"367_CR41","unstructured":"Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann. 1993."},{"issue":"4","key":"367_CR42","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s10916-007-9064-1","volume":"31","author":"AR Razavi","year":"2007","unstructured":"Razavi, A. R., Gill, H., Ahlfeldt, H., and Shahsavar, N., Predicting metastasis in breast cancer: comparing a decision tree with domain experts. J. Med. Syst. 31(4):263\u2013273, 2007.","journal-title":"J. Med. Syst."},{"key":"367_CR43","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1162\/neco.1991.3.2.246","volume":"3","author":"J Park","year":"1991","unstructured":"Park, J., and Sandberg, J. W., Universal approximation using rasial basis function network. Neural Comput. 3:246\u2013257, 1991.","journal-title":"Neural Comput."},{"issue":"9","key":"367_CR44","doi-asserted-by":"crossref","first-page":"1481","DOI":"10.1109\/5.58326","volume":"78","author":"T Poggio","year":"1990","unstructured":"Poggio, T., and Girosi, F., Networks for approximation learning. Proc. IEEE. 78(9):1481\u20131497, 1990.","journal-title":"Proc. IEEE."},{"key":"367_CR45","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/BF00337288","volume":"43","author":"T Kohonen","year":"1982","unstructured":"Kohonen, T., Self-organized formation of topologically correct feature maps. Biol. Cybern. 43:59\u201369, 1982.","journal-title":"Biol. Cybern."},{"key":"367_CR46","doi-asserted-by":"crossref","unstructured":"Saadatdoost, R., Alex, T., H., S., Jafarkarimi, H. Application of self organizing map for knowledge discovery based in higher education data. Proceeding of International Conference on IEEE Research and Innovation in Information Systems (ICRIIS), 1\u20136, 2011.","DOI":"10.1109\/ICRIIS.2011.6125693"},{"key":"367_CR47","unstructured":"Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 2005"}],"container-title":["Journal of Medical Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10916-015-0367-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10916-015-0367-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10916-015-0367-3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T14:56:45Z","timestamp":1567349805000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10916-015-0367-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,11,14]]},"references-count":47,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2016,1]]}},"alternative-id":["367"],"URL":"https:\/\/doi.org\/10.1007\/s10916-015-0367-3","relation":{},"ISSN":["0148-5598","1573-689X"],"issn-type":[{"value":"0148-5598","type":"print"},{"value":"1573-689X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,11,14]]},"article-number":"35"}}