{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T19:35:33Z","timestamp":1726083333000},"reference-count":23,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2023,5,12]],"date-time":"2023-05-12T00:00:00Z","timestamp":1683849600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,5,12]],"date-time":"2023-05-12T00:00:00Z","timestamp":1683849600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100007051","name":"Uppsala University","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100007051","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sci Comput"],"published-print":{"date-parts":[[2023,6]]},"abstract":"Abstract<\/jats:title>Imposition methods of interface conditions for the second-order wave equation with non-conforming grids is considered. The spatial discretization is based on high order finite differences with summation-by-parts properties. Previously presented solution methods for this problem, based on the simultaneous approximation term (SAT) method, have shown to introduce significant stiffness. This can lead to highly inefficient schemes. Here, two new methods of imposing the interface conditions to avoid the stiffness problems are presented: (1) a projection method and (2) a hybrid between the projection method and the SAT method. Numerical experiments are performed using traditional and order-preserving interpolation operators. Both of the novel methods retain the accuracy and convergence behavior of the previously developed SAT method but are significantly less stiff.<\/jats:p>","DOI":"10.1007\/s10915-023-02218-1","type":"journal-article","created":{"date-parts":[[2023,5,12]],"date-time":"2023-05-12T09:02:26Z","timestamp":1683882146000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Non-conforming Interface Conditions for the Second-Order Wave Equation"],"prefix":"10.1007","volume":"95","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4426-3745","authenticated-orcid":false,"given":"Gustav","family":"Eriksson","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,12]]},"reference":[{"issue":"3","key":"2218_CR1","doi-asserted-by":"publisher","first-page":"199","DOI":"10.3402\/tellusa.v24i3.10634","volume":"24","author":"H-O Kreiss","year":"1972","unstructured":"Kreiss, H.-O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199\u2013215 (1972). https:\/\/doi.org\/10.3402\/tellusa.v24i3.10634","journal-title":"Tellus"},{"issue":"2","key":"2218_CR2","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1006\/jcph.1994.1057","volume":"111","author":"MH Carpenter","year":"1994","unstructured":"Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220\u2013236 (1994). https:\/\/doi.org\/10.1006\/jcph.1994.1057","journal-title":"J. Comput. Phys."},{"issue":"211","key":"2218_CR3","doi-asserted-by":"publisher","first-page":"1035","DOI":"10.1090\/s0025-5718-1995-1297474-x","volume":"64","author":"P Olsson","year":"1995","unstructured":"Olsson, P.: Summation by parts, projections, and stability. I. Math. Comput. 64(211), 1035 (1995). https:\/\/doi.org\/10.1090\/s0025-5718-1995-1297474-x","journal-title":"Math. Comput."},{"issue":"212","key":"2218_CR4","doi-asserted-by":"publisher","first-page":"1473","DOI":"10.1090\/s0025-5718-1995-1308459-9","volume":"64","author":"P Olsson","year":"1995","unstructured":"Olsson, P.: Summation by parts, projections, and stability. II. Math. Comput. 64(212), 1473\u20131473 (1995). https:\/\/doi.org\/10.1090\/s0025-5718-1995-1308459-9","journal-title":"Math. Comput."},{"issue":"1","key":"2218_CR5","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/s10915-011-9531-1","volume":"52","author":"B Sj\u00f6green","year":"2012","unstructured":"Sj\u00f6green, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17\u201348 (2012). https:\/\/doi.org\/10.1007\/s10915-011-9531-1","journal-title":"J. Sci. Comput."},{"key":"2218_CR6","doi-asserted-by":"publisher","unstructured":"Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time-Dependent Problems and Difference Methods, 2nd edn. John Wiley & Sons, Inc. Hoboken, New Jersey (2013). https:\/\/doi.org\/10.1002\/9781118548448","DOI":"10.1002\/9781118548448"},{"key":"2218_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.compfluid.2014.02.016","author":"DC Del Rey Fern\u00e1ndez","year":"2014","unstructured":"Del Rey Fern\u00e1ndez, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluid (2014). https:\/\/doi.org\/10.1016\/j.compfluid.2014.02.016","journal-title":"Comput. Fluid"},{"key":"2218_CR8","doi-asserted-by":"publisher","first-page":"820","DOI":"10.1016\/j.jcp.2015.07.023","volume":"299","author":"NA Petersson","year":"2015","unstructured":"Petersson, N.A., Sj\u00f6green, B.: Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method. J. Comput. Phys. 299, 820\u2013841 (2015). https:\/\/doi.org\/10.1016\/j.jcp.2015.07.023","journal-title":"J. Comput. Phys."},{"issue":"5","key":"2218_CR9","doi-asserted-by":"publisher","first-page":"3246","DOI":"10.1137\/18M1211465","volume":"41","author":"S Wang","year":"2019","unstructured":"Wang, S., Petersson, N.A.: Fourth order finite difference methods for the wave equation with mesh refinement interfaces. SIAM J. Sci. Comput. 41(5), 3246\u20133275 (2019). https:\/\/doi.org\/10.1137\/18M1211465","journal-title":"SIAM J. Sci. Comput."},{"key":"2218_CR10","doi-asserted-by":"publisher","first-page":"1261","DOI":"10.1016\/j.jcp.2018.06.010","volume":"374","author":"K Mattsson","year":"2018","unstructured":"Mattsson, K., Almquist, M., van der Weide, E.: Boundary optimized diagonal-norm SBP operators. J. Comput. Phys. 374, 1261\u20131266 (2018). https:\/\/doi.org\/10.1016\/j.jcp.2018.06.010","journal-title":"J. Comput. Phys."},{"issue":"4","key":"2218_CR11","doi-asserted-by":"publisher","first-page":"2298","DOI":"10.1137\/090750068","volume":"32","author":"K Mattsson","year":"2010","unstructured":"Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32(4), 2298\u20132320 (2010). https:\/\/doi.org\/10.1137\/090750068","journal-title":"SIAM J. Sci. Comput."},{"issue":"2","key":"2218_CR12","doi-asserted-by":"publisher","first-page":"923","DOI":"10.1137\/15M1022823","volume":"38","author":"JE Kozdon","year":"2016","unstructured":"Kozdon, J.E., Wilcox, L.C.: Stable coupling of nonconforming, high-order finite difference methods. SIAM J. Sci. Comput. 38(2), 923\u2013952 (2016). https:\/\/doi.org\/10.1137\/15M1022823","journal-title":"SIAM J. Sci. Comput."},{"issue":"3","key":"2218_CR13","doi-asserted-by":"publisher","first-page":"1002","DOI":"10.1007\/s10915-016-0165-1","volume":"68","author":"S Wang","year":"2016","unstructured":"Wang, S., Virta, K., Kreiss, G.: High order finite difference methods for the wave equation with non-conforming grid interfaces. J. Sci. Comput. 68(3), 1002\u20131028 (2016). https:\/\/doi.org\/10.1007\/s10915-016-0165-1","journal-title":"J. Sci. Comput."},{"issue":"2","key":"2218_CR14","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1007\/s10915-018-0723-9","volume":"77","author":"S Wang","year":"2018","unstructured":"Wang, S.: An improved high order finite difference method for non-conforming grid interfaces for the wave equation. J. Sci. Comput. 77(2), 775\u2013792 (2018). https:\/\/doi.org\/10.1007\/s10915-018-0723-9","journal-title":"J. Sci. Comput."},{"key":"2218_CR15","doi-asserted-by":"publisher","DOI":"10.1137\/18M1191609","author":"M Almquist","year":"2019","unstructured":"Almquist, M., Wang, S., Werpers, J.: Order-preserving interpolation for summation-by-parts operators at nonconforming grid interfaces. SIAM J. Sci. Comput. (2019). https:\/\/doi.org\/10.1137\/18M1191609","journal-title":"SIAM J. Sci. Comput."},{"issue":"19","key":"2218_CR16","doi-asserted-by":"publisher","first-page":"8753","DOI":"10.1016\/j.jcp.2008.06.023","volume":"227","author":"K Mattsson","year":"2008","unstructured":"Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J. Comput. Phys. 227(19), 8753\u20138767 (2008). https:\/\/doi.org\/10.1016\/j.jcp.2008.06.023","journal-title":"J. Comput. Phys."},{"issue":"2","key":"2218_CR17","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1016\/j.jcp.2004.03.001","volume":"199","author":"K Mattsson","year":"2004","unstructured":"Mattsson, K., Nordstr\u00f6m, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503\u2013540 (2004). https:\/\/doi.org\/10.1016\/j.jcp.2004.03.001","journal-title":"J. Comput. Phys."},{"issue":"1","key":"2218_CR18","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1016\/j.jcp.2006.02.014","volume":"218","author":"M Sv\u00e4rd","year":"2006","unstructured":"Sv\u00e4rd, M., Nordstr\u00fcm, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218(1), 333\u2013352 (2006). https:\/\/doi.org\/10.1016\/j.jcp.2006.02.014","journal-title":"J. Comput. Phys."},{"key":"2218_CR19","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.jcp.2018.02.018","volume":"362","author":"T Lundquist","year":"2018","unstructured":"Lundquist, T., Malan, A., Nordstr\u00fcm, J.: A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes. J. Comput. Phys. 362, 49\u201368 (2018). https:\/\/doi.org\/10.1016\/j.jcp.2018.02.018","journal-title":"J. Comput. Phys."},{"issue":"3","key":"2218_CR20","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1007\/s10915-022-01941-5","volume":"92","author":"G Eriksson","year":"2022","unstructured":"Eriksson, G., Mattsson, K.: Weak versus strong wall boundary conditions for the incompressible Navier-stokes equations. J. Sci. Comput. 92(3), 81 (2022). https:\/\/doi.org\/10.1007\/s10915-022-01941-5","journal-title":"J. Sci. Comput."},{"issue":"1","key":"2218_CR21","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1016\/j.jcp.2006.05.007","volume":"220","author":"K Mattsson","year":"2006","unstructured":"Mattsson, K., Nordstr\u00f6m, J.: High order finite difference methods for wave propagation in discontinuous media. J. Comput. Phys. 220(1), 249\u2013269 (2006). https:\/\/doi.org\/10.1016\/j.jcp.2006.05.007","journal-title":"J. Comput. Phys."},{"issue":"3","key":"2218_CR22","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1007\/s10915-009-9305-1","volume":"41","author":"K Mattsson","year":"2009","unstructured":"Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation on second-order form. J. Sci. Comput. 41(3), 366\u2013383 (2009). https:\/\/doi.org\/10.1007\/s10915-009-9305-1","journal-title":"J. Sci. Comput."},{"key":"2218_CR23","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1016\/j.jcp.2015.01.038","volume":"286","author":"K Mattsson","year":"2015","unstructured":"Mattsson, K., Stiernstr\u00fcm, V.: High-fidelity numerical simulation of the dynamic beam equation. J. Comput. Phys. 286, 194\u2013213 (2015). https:\/\/doi.org\/10.1016\/j.jcp.2015.01.038","journal-title":"J. Comput. Phys."}],"container-title":["Journal of Scientific Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-023-02218-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10915-023-02218-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-023-02218-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,30]],"date-time":"2023-05-30T16:22:08Z","timestamp":1685463728000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10915-023-02218-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,12]]},"references-count":23,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2023,6]]}},"alternative-id":["2218"],"URL":"https:\/\/doi.org\/10.1007\/s10915-023-02218-1","relation":{},"ISSN":["0885-7474","1573-7691"],"issn-type":[{"value":"0885-7474","type":"print"},{"value":"1573-7691","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,5,12]]},"assertion":[{"value":"29 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 January 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 April 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 May 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The author has no conflict of interest to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"92"}}