{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:39:08Z","timestamp":1740123548507,"version":"3.37.3"},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,2,17]],"date-time":"2023-02-17T00:00:00Z","timestamp":1676592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,2,17]],"date-time":"2023-02-17T00:00:00Z","timestamp":1676592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"Swiss Federal Institute of Technology Zurich"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sci Comput"],"published-print":{"date-parts":[[2023,4]]},"abstract":"Abstract<\/jats:title>Theoretically, the conditional expectation of a square-integrable random variable Y<\/jats:italic> given a d<\/jats:italic>-dimensional random vector X<\/jats:italic> can be obtained by minimizing the mean squared distance between Y<\/jats:italic> and f<\/jats:italic>(X<\/jats:italic>) over all Borel measurable functions $$f :\\mathbb {R}^d \\rightarrow \\mathbb {R}$$<\/jats:tex-math>\n \n f<\/mml:mi>\n :<\/mml:mo>\n \n \n R<\/mml:mi>\n <\/mml:mrow>\n d<\/mml:mi>\n <\/mml:msup>\n \u2192<\/mml:mo>\n R<\/mml:mi>\n <\/mml:mrow>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>. However, in many applications this minimization problem cannot be solved exactly, and instead, a numerical method which computes an approximate minimum over a suitable subfamily of Borel functions has to be used. The quality of the result depends on the adequacy of the subfamily and the performance of the numerical method. In this paper, we derive an expected value representation of the minimal mean squared distance which in many applications can efficiently be approximated with a standard Monte Carlo average. This enables us to provide guarantees for the accuracy of any numerical approximation of a given conditional expectation. We illustrate the method by assessing the quality of approximate conditional expectations obtained by linear, polynomial and neural network regression in different concrete examples.\n<\/jats:p>","DOI":"10.1007\/s10915-023-02130-8","type":"journal-article","created":{"date-parts":[[2023,2,17]],"date-time":"2023-02-17T09:10:41Z","timestamp":1676625041000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Computation of Conditional Expectations with Guarantees"],"prefix":"10.1007","volume":"95","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9074-7295","authenticated-orcid":false,"given":"Patrick","family":"Cheridito","sequence":"first","affiliation":[]},{"given":"Balint","family":"Gersey","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,17]]},"reference":[{"key":"2130_CR1","doi-asserted-by":"publisher","first-page":"1487","DOI":"10.1016\/S0378-4266(02)00283-2","volume":"26","author":"C Acerbi","year":"2002","unstructured":"Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Financ. 26, 1487\u20131503 (2002)","journal-title":"J. Bank. Financ."},{"key":"2130_CR2","unstructured":"\u00c5str\u00f6m, K.J.: Introduction to Stochastic Control Theory. Mathematics in Science and Engineering, vol. 70. Academic Press, New York, London (1970)"},{"key":"2130_CR3","doi-asserted-by":"crossref","unstructured":"Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering, vol. 60. Springer (2008)","DOI":"10.1007\/978-0-387-76896-0"},{"key":"2130_CR4","unstructured":"Bally, V.: Approximation scheme for solutions of BSDE. In: Pitman Research Notes in Mathematics Series, vol. 364. Longman (1997)"},{"key":"2130_CR5","first-page":"453","volume":"42","author":"D Bauer","year":"2012","unstructured":"Bauer, D., Reuss, A., Singer, D.: On the calculation of the solvency capital requirement based on nested simulations. ASTIN Bull. 42, 453\u2013499 (2012)","journal-title":"ASTIN Bull."},{"key":"2130_CR6","unstructured":"Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep learning based numerical approximation algorithms for stochastic partial differential equations and high-dimensional nonlinear filtering problems. arXiv:2012.01194 (2020)"},{"issue":"5","key":"2130_CR7","doi-asserted-by":"publisher","first-page":"A3135","DOI":"10.1137\/19M1297919","volume":"43","author":"C Beck","year":"2021","unstructured":"Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep splitting method for parabolic PDEs. SIAM J. Sci. Comput. 43(5), A3135\u2013A3154 (2021)","journal-title":"SIAM J. Sci. Comput."},{"key":"2130_CR8","doi-asserted-by":"crossref","unstructured":"Becker, S., Cheridito, P., Jentzen, A.: Pricing and hedging American-style options with deep learning. J. Risk Financ. Manag. 13(7), 158, 1\u201312 (2020)","DOI":"10.3390\/jrfm13070158"},{"key":"2130_CR9","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611971484","volume-title":"Numerical Methods for Least Squares Problems","author":"\u00c5 Bj\u00f6rck","year":"1996","unstructured":"Bj\u00f6rck, \u00c5.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)"},{"issue":"2","key":"2130_CR10","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1016\/j.spa.2004.01.001","volume":"11","author":"B Bouchard","year":"2004","unstructured":"Bouchard, B., Touzi, N.: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 11(2), 175\u2013206 (2004)","journal-title":"Stoch. Process. Appl."},{"key":"2130_CR11","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1080\/14697680701763086","volume":"8","author":"M Broadie","year":"2008","unstructured":"Broadie, M., Cao, M.: Improved lower and upper bound algorithms for pricing American options by simulation. Quant. Finance 8, 845\u2013861 (2008)","journal-title":"Quant. Finance"},{"key":"2130_CR12","doi-asserted-by":"publisher","first-page":"35","DOI":"10.21314\/JCF.2004.117","volume":"7","author":"M Broadie","year":"2004","unstructured":"Broadie, M., Glasserman, P.: A stochastic mesh method for pricing high-dimensional American options. J. Comput. Financ. 7, 35\u201372 (2004)","journal-title":"J. Comput. Financ."},{"key":"2130_CR13","doi-asserted-by":"publisher","first-page":"1172","DOI":"10.1287\/mnsc.1110.1330","volume":"57","author":"M Broadie","year":"2011","unstructured":"Broadie, M., Yiping, D., Moallemi, C.C.: Efficient risk estimation via nested sequential simulation. Manage. Sci. 57, 1172\u20131194 (2011)","journal-title":"Manage. Sci."},{"key":"2130_CR14","doi-asserted-by":"publisher","first-page":"1077","DOI":"10.1287\/opre.2015.1419","volume":"63","author":"M Broadie","year":"2015","unstructured":"Broadie, M., Yiping, D., Moallemi, C.C.: Risk estimation via regression. Oper. Res. 63, 1077\u20131097 (2015)","journal-title":"Oper. Res."},{"key":"2130_CR15","first-page":"197","volume":"21","author":"B Bru","year":"1985","unstructured":"Bru, B., Heinich, H.: Meilleures approximations et m\u00e9dianes conditionnelles. Ann. l\u2019IHP Probab. Stat. 21, 197\u2013224 (1985)","journal-title":"Ann. l\u2019IHP Probab. Stat."},{"key":"2130_CR16","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/S0167-6687(96)00004-2","volume":"19","author":"JF Carriere","year":"1996","unstructured":"Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance Math. Econom. 19, 19\u201330 (1996)","journal-title":"Insurance Math. Econom."},{"key":"2130_CR17","unstructured":"Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. Wiley (2015)"},{"key":"2130_CR18","doi-asserted-by":"crossref","unstructured":"Cheridito, P., Ery, J., W\u00fcthrich, M.V.: Assessing asset-liability risk with neural networks. Risks 8(1), 16, 1\u201317 (2020)","DOI":"10.3390\/risks8010016"},{"key":"2130_CR19","doi-asserted-by":"crossref","unstructured":"Chevance, D.: Numerical methods for backward SDEs. In: Numerical Methods in Finance, vol. 232 (1997)","DOI":"10.1017\/CBO9781139173056.013"},{"key":"2130_CR20","doi-asserted-by":"crossref","unstructured":"Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, New York (1998)","DOI":"10.1002\/9781118625590"},{"issue":"4","key":"2130_CR21","doi-asserted-by":"publisher","first-page":"1322","DOI":"10.1214\/10-AAP723","volume":"21","author":"A Fahim","year":"2011","unstructured":"Fahim, A., Touzi, N., Warin, X.: A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab. 21(4), 1322\u20131364 (2011)","journal-title":"Ann. Appl. Probab."},{"key":"2130_CR22","doi-asserted-by":"crossref","unstructured":"F\u00f6llmer, H., Schied, A.: Stochastic Finance. De Gruyter Textbook (2016)","DOI":"10.1515\/9783110463453"},{"key":"2130_CR23","doi-asserted-by":"crossref","unstructured":"Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. CRC Press (2013)","DOI":"10.1201\/b16018"},{"key":"2130_CR24","unstructured":"Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249\u2013256 (2010)"},{"key":"2130_CR25","doi-asserted-by":"publisher","first-page":"1359","DOI":"10.1090\/mcom\/3013","volume":"85","author":"E Gobet","year":"2006","unstructured":"Gobet, E., Turkedjiev, P.: Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Math. Comput. 85, 1359\u20131391 (2006)","journal-title":"Math. Comput."},{"key":"2130_CR26","doi-asserted-by":"publisher","first-page":"2172","DOI":"10.1214\/105051605000000412","volume":"15","author":"E Gobet","year":"2005","unstructured":"Gobet, E., Lemor, J.-P., Warin, X.: A regression-based Monte Carlo method to solve backward SDEs. Ann. Appl. Probab. 15, 2172\u20132202 (2005)","journal-title":"Ann. Appl. Probab."},{"key":"2130_CR27","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)"},{"key":"2130_CR28","doi-asserted-by":"publisher","first-page":"1833","DOI":"10.1287\/mnsc.1100.1213","volume":"56","author":"MB Gordy","year":"2010","unstructured":"Gordy, M.B., Juneja, S.: Nested simulation in portfolio risk measurement. Manage. Sci. 56, 1833\u20131848 (2010)","journal-title":"Manage. Sci."},{"key":"2130_CR29","doi-asserted-by":"crossref","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer (2009)","DOI":"10.1007\/978-0-387-84858-7"},{"key":"2130_CR30","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448\u2013456 (2015)"},{"key":"2130_CR31","unstructured":"Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation (2007)"},{"key":"2130_CR32","doi-asserted-by":"crossref","unstructured":"Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer (1998)","DOI":"10.1007\/b98840"},{"key":"2130_CR33","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)"},{"key":"2130_CR34","doi-asserted-by":"publisher","first-page":"238","DOI":"10.1145\/937332.937334","volume":"13","author":"S-H Lee","year":"2003","unstructured":"Lee, S.-H., Glynn, P.W.: Computing the distribution function of a conditional expectation via Monte Carlo: discrete conditioning spaces. ACM Trans. Model. Comput. Simul. 13, 238\u2013258 (2003)","journal-title":"ACM Trans. Model. Comput. Simul."},{"key":"2130_CR35","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1093\/rfs\/14.1.113","volume":"14","author":"FA Longstaff","year":"2001","unstructured":"Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113\u2013147 (2001)","journal-title":"Rev. Financ. Stud."},{"key":"2130_CR36","doi-asserted-by":"crossref","unstructured":"Ryan,T.P.: Modern regression methods. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Hoboken (2009)","DOI":"10.1002\/9780470382806"},{"key":"2130_CR37","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1109\/72.935083","volume":"12","author":"JN Tsitsiklis","year":"2001","unstructured":"Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex American-style options. IEEE Trans. Neural Netw. 12, 694\u2013703 (2001)","journal-title":"IEEE Trans. Neural Netw."}],"container-title":["Journal of Scientific Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-023-02130-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10915-023-02130-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-023-02130-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T07:13:40Z","timestamp":1679901220000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10915-023-02130-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,17]]},"references-count":37,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["2130"],"URL":"https:\/\/doi.org\/10.1007\/s10915-023-02130-8","relation":{},"ISSN":["0885-7474","1573-7691"],"issn-type":[{"type":"print","value":"0885-7474"},{"type":"electronic","value":"1573-7691"}],"subject":[],"published":{"date-parts":[[2023,2,17]]},"assertion":[{"value":"27 February 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 December 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 January 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 February 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have not disclosed any competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"12"}}