{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:40:21Z","timestamp":1740123621683,"version":"3.37.3"},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2019,3,27]],"date-time":"2019-03-27T00:00:00Z","timestamp":1553644800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"crossref","award":["2017YFB0701700"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sci Comput"],"published-print":{"date-parts":[[2019,8]]},"DOI":"10.1007\/s10915-019-00953-y","type":"journal-article","created":{"date-parts":[[2019,4,5]],"date-time":"2019-04-05T12:14:28Z","timestamp":1554466468000},"page":"717-742","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["An Exponentially Convergent Scheme in Time for Time Fractional Diffusion Equations with Non-smooth Initial Data"],"prefix":"10.1007","volume":"80","author":[{"given":"Beiping","family":"Duan","sequence":"first","affiliation":[]},{"given":"Zhoushun","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,3,27]]},"reference":[{"issue":"300","key":"953_CR1","doi-asserted-by":"publisher","first-page":"1603","DOI":"10.1090\/mcom3035","volume":"85","author":"S Chen","year":"2016","unstructured":"Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603\u20131638 (2016)","journal-title":"Math. Comput."},{"issue":"4","key":"953_CR2","doi-asserted-by":"publisher","first-page":"938","DOI":"10.1016\/j.cam.2009.08.057","volume":"233","author":"Y Chen","year":"2009","unstructured":"Chen, Y., Tang, T.: Spectral methods for weakly singular volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233(4), 938\u2013950 (2009)","journal-title":"J. Comput. Appl. Math."},{"issue":"269","key":"953_CR3","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1090\/S0025-5718-09-02269-8","volume":"79","author":"Y Chen","year":"2010","unstructured":"Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79(269), 147\u2013167 (2010)","journal-title":"Math. Comput."},{"issue":"1","key":"953_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1515\/cmam-2017-0026","volume":"18","author":"B Duan","year":"2018","unstructured":"Duan, B., Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Space-time Petrov\u2013Galerkin fem for fractional diffusion problems. Comput. Methods Appl. Math. 18(1), 1\u201320 (2018)","journal-title":"Comput. Methods Appl. Math."},{"key":"953_CR5","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1016\/j.jcp.2016.05.017","volume":"319","author":"B Duan","year":"2016","unstructured":"Duan, B., Zheng, Z., Cao, W.: Spectral approximation methods and error estimates for Caputo fractional derivative with applications to initial-value problems. J. Comput. Phys. 319, 108\u2013128 (2016)","journal-title":"J. Comput. Phys."},{"issue":"1","key":"953_CR6","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1515\/cmam-2017-0027","volume":"18","author":"D Hou","year":"2018","unstructured":"Hou, D., Hasan, M.T., Xu, C.: M\u00fcntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18(1), 43\u201362 (2018)","journal-title":"Comput. Methods Appl. Math."},{"issue":"5","key":"953_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10444-016-9511-y","volume":"43","author":"D Hou","year":"2017","unstructured":"Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 1\u201334 (2017)","journal-title":"Adv. Comput. Math."},{"issue":"3","key":"953_CR8","doi-asserted-by":"publisher","first-page":"650","DOI":"10.4208\/cicp.OA-2016-0136","volume":"21","author":"S Jiang","year":"2017","unstructured":"Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650\u2013678 (2017)","journal-title":"Commun. Comput. Phys."},{"issue":"1","key":"953_CR9","doi-asserted-by":"publisher","first-page":"445","DOI":"10.1137\/120873984","volume":"51","author":"B Jin","year":"2013","unstructured":"Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445\u2013466 (2013)","journal-title":"SIAM J. Numer. Anal."},{"issue":"2","key":"953_CR10","first-page":"197","volume":"36","author":"B Jin","year":"2015","unstructured":"Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(2), 197\u2013221 (2015)","journal-title":"IMA J. Numer. Anal."},{"issue":"1","key":"953_CR11","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/s11464-012-0170-0","volume":"7","author":"X Li","year":"2012","unstructured":"Li, X., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel\u2013Volterra integral equations of second kind. Front. Math. China 7(1), 69\u201384 (2012)","journal-title":"Front. Math. China"},{"issue":"2","key":"953_CR12","doi-asserted-by":"publisher","first-page":"1533","DOI":"10.1016\/j.jcp.2007.02.001","volume":"225","author":"Y Lin","year":"2007","unstructured":"Lin, Y., Xu, C.: Finite difference\/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533\u20131552 (2007)","journal-title":"J. Comput. Phys."},{"issue":"3","key":"953_CR13","doi-asserted-by":"publisher","first-page":"704","DOI":"10.1137\/0517050","volume":"17","author":"C Lubich","year":"1986","unstructured":"Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704\u2013719 (1986)","journal-title":"SIAM J. Math. Anal."},{"issue":"2","key":"953_CR14","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1007\/BF01398686","volume":"52","author":"C Lubich","year":"1988","unstructured":"Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129\u2013145 (1988)","journal-title":"Numer. Math."},{"issue":"4","key":"953_CR15","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1007\/BF01462237","volume":"52","author":"C Lubich","year":"1988","unstructured":"Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52(4), 413\u2013425 (1988)","journal-title":"Numer. Math."},{"issue":"213","key":"953_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1090\/S0025-5718-96-00677-1","volume":"65","author":"C Lubich","year":"1996","unstructured":"Lubich, C., Sloan, I., Thom\u00e9e, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. Am. Math. Soc. 65(213), 1\u201317 (1996)","journal-title":"Math. Comput. Am. Math. Soc."},{"issue":"2","key":"953_CR17","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1137\/S0036144503429121","volume":"46","author":"PO Persson","year":"2004","unstructured":"Persson, P.O., Strang, G.: A simple mesh generator in matlab. SIAM Rev. 46(2), 329\u2013345 (2004)","journal-title":"SIAM Rev."},{"key":"953_CR18","volume-title":"Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications","author":"I Podlubny","year":"1998","unstructured":"Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)"},{"issue":"12","key":"953_CR19","doi-asserted-by":"publisher","first-page":"1115","DOI":"10.1090\/S0002-9904-1948-09132-7","volume":"54","author":"H Pollard","year":"1948","unstructured":"Pollard, H.: The completely monotonic character of the Mittag\u2013Leffler function \n \n \n \n $${E}_{\\alpha }(-x)$$\n \n \n \n \n E\n \u03b1\n \n \n (\n -\n x\n )\n \n \n \n \n . Bull. Am. Math. Soc. 54(12), 1115\u20131116 (1948)","journal-title":"Bull. Am. Math. Soc."},{"issue":"1","key":"953_CR20","doi-asserted-by":"publisher","first-page":"426","DOI":"10.1016\/j.jmaa.2011.04.058","volume":"382","author":"K Sakamoto","year":"2011","unstructured":"Sakamoto, K., Yamamoto, M.: Initial value\/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426\u2013447 (2011)","journal-title":"J. Math. Anal. Appl."},{"key":"953_CR21","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-71041-7","volume-title":"Spectral Methods: Algorithms, Analysis and Applications","author":"J Shen","year":"2011","unstructured":"Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)"},{"issue":"4","key":"953_CR22","doi-asserted-by":"publisher","first-page":"834","DOI":"10.4208\/eajam.010418.020718","volume":"8","author":"Jy Shen","year":"2018","unstructured":"Shen, Jy, Sun, Zz, Du, R.: Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time. East Asian J. Appl. Math. 8(4), 834\u2013858 (2018)","journal-title":"East Asian J. Appl. Math."},{"issue":"2","key":"953_CR23","doi-asserted-by":"publisher","first-page":"437","DOI":"10.4208\/nmtma.2017.s11","volume":"10","author":"C Sheng","year":"2017","unstructured":"Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437\u2013464 (2017)","journal-title":"Numer. Math. Theory Methods Appl."},{"key":"953_CR24","doi-asserted-by":"publisher","first-page":"854","DOI":"10.4208\/nmtma.2018.s10","volume":"11","author":"C Sheng","year":"2018","unstructured":"Sheng, C., Shen, J.: A space-time Petrov\u2013Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theory Methods Appl. 11, 854\u2013876 (2018)","journal-title":"Numer. Math. Theory Methods Appl."},{"issue":"6","key":"953_CR25","doi-asserted-by":"publisher","first-page":"1554","DOI":"10.1515\/fca-2016-0080","volume":"19","author":"M Stynes","year":"2016","unstructured":"Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 1554\u20131562 (2016)","journal-title":"Fract. Calc. Appl. Anal."},{"issue":"2","key":"953_CR26","doi-asserted-by":"publisher","first-page":"1057","DOI":"10.1137\/16M1082329","volume":"55","author":"M Stynes","year":"2017","unstructured":"Stynes, M., O\u2019Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057\u20131079 (2017)","journal-title":"SIAM J. Numer. Anal."},{"issue":"4","key":"953_CR27","doi-asserted-by":"publisher","first-page":"611","DOI":"10.4208\/eajam.050818.071018","volume":"8","author":"T Sun","year":"2018","unstructured":"Sun, T., Liu, Rq, Wang, L.L.: Generalised m\u00fcntz spectral galerkin methods for singularly perturbed fractional differential equations. East Asian J. Appl. Math. 8(4), 611\u2013633 (2018)","journal-title":"East Asian J. Appl. Math."},{"issue":"2","key":"953_CR28","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1016\/j.apnum.2005.03.003","volume":"56","author":"Zz Sun","year":"2006","unstructured":"Sun, Zz, Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193\u2013209 (2006)","journal-title":"Appl. Numer. Math."},{"key":"953_CR29","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.jcp.2017.12.029","volume":"358","author":"SL Wu","year":"2018","unstructured":"Wu, S.L., Zhou, T.: Parareal algorithms with local time-integrators for time fractional differential equations. J. Comput. Phys. 358, 135\u2013149 (2018)","journal-title":"J. Comput. Phys."},{"issue":"4","key":"953_CR30","doi-asserted-by":"publisher","first-page":"1028","DOI":"10.4208\/cicp.OA-2017-0019","volume":"22","author":"SZZ Yan Yonggui","year":"2017","unstructured":"Yan Yonggui, S.Z.Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028\u20131048 (2017)","journal-title":"Commun. Comput. Phys."},{"issue":"1","key":"953_CR31","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1137\/16M1094257","volume":"56","author":"Y Yan","year":"2018","unstructured":"Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified l1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210\u2013227 (2018)","journal-title":"SIAM J. Numer. Anal."},{"key":"953_CR32","doi-asserted-by":"publisher","first-page":"1545","DOI":"10.1016\/j.cma.2014.10.051","volume":"283","author":"M Zayernouri","year":"2015","unstructured":"Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov\u2013Galerkin spectral method for fractional pdes. Comput. Methods Appl. Mech. Eng. 283, 1545\u20131569 (2015)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"953_CR33","doi-asserted-by":"publisher","first-page":"495","DOI":"10.1016\/j.jcp.2013.06.031","volume":"252","author":"M Zayernouri","year":"2013","unstructured":"Zayernouri, M., Karniadakis, G.E.: Fractional sturm-liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495\u2013517 (2013)","journal-title":"J. Comput. Phys."},{"issue":"1","key":"953_CR34","doi-asserted-by":"publisher","first-page":"A40","DOI":"10.1137\/130933216","volume":"36","author":"M Zayernouri","year":"2014","unstructured":"Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40\u2013A62 (2014)","journal-title":"SIAM J. Sci. Comput."}],"container-title":["Journal of Scientific Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-019-00953-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10915-019-00953-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-019-00953-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,3,26]],"date-time":"2020-03-26T00:23:23Z","timestamp":1585182203000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10915-019-00953-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,3,27]]},"references-count":34,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2019,8]]}},"alternative-id":["953"],"URL":"https:\/\/doi.org\/10.1007\/s10915-019-00953-y","relation":{},"ISSN":["0885-7474","1573-7691"],"issn-type":[{"type":"print","value":"0885-7474"},{"type":"electronic","value":"1573-7691"}],"subject":[],"published":{"date-parts":[[2019,3,27]]},"assertion":[{"value":"9 December 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 February 2019","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 March 2019","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 March 2019","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}