{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:41:45Z","timestamp":1732038105192},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2019,1,22]],"date-time":"2019-01-22T00:00:00Z","timestamp":1548115200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,22]],"date-time":"2019-01-22T00:00:00Z","timestamp":1548115200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DMS-1217122"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sci Comput"],"published-print":{"date-parts":[[2019,6]]},"DOI":"10.1007\/s10915-019-00911-8","type":"journal-article","created":{"date-parts":[[2019,1,23]],"date-time":"2019-01-23T22:49:49Z","timestamp":1548283789000},"page":"1777-1800","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":21,"title":["Interpolatory HDG Method for Parabolic Semilinear PDEs"],"prefix":"10.1007","volume":"79","author":[{"given":"Bernardo","family":"Cockburn","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5415-8386","authenticated-orcid":false,"given":"John R.","family":"Singler","sequence":"additional","affiliation":[]},{"given":"Yangwen","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,22]]},"reference":[{"key":"911_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-75934-0","volume-title":"The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics","author":"SC Brenner","year":"2008","unstructured":"Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). \n https:\/\/doi.org\/10.1007\/978-0-387-75934-0","edition":"3"},{"issue":"306","key":"911_CR2","doi-asserted-by":"publisher","first-page":"1643","DOI":"10.1090\/mcom\/3195","volume":"86","author":"A Cesmelioglu","year":"2017","unstructured":"Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier\u2013Stokes equations. Math. Comput. 86(306), 1643\u20131670 (2017). \n https:\/\/doi.org\/10.1090\/mcom\/3195","journal-title":"Math. Comput."},{"issue":"277","key":"911_CR3","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1090\/S0025-5718-2011-02525-1","volume":"81","author":"B Chabaud","year":"2012","unstructured":"Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81(277), 107\u2013129 (2012). \n https:\/\/doi.org\/10.1090\/S0025-5718-2011-02525-1","journal-title":"Math. Comput."},{"issue":"4","key":"911_CR4","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1093\/imanum\/9.4.507","volume":"9","author":"CM Chen","year":"1989","unstructured":"Chen, C.M., Larsson, S., Zhang, N.Y.: Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation. IMA J. Numer. Anal. 9(4), 507\u2013524 (1989). \n https:\/\/doi.org\/10.1093\/imanum\/9.4.507","journal-title":"IMA J. Numer. Anal."},{"issue":"2","key":"911_CR5","first-page":"137","volume":"10","author":"Z Chen","year":"1991","unstructured":"Chen, Z., Douglas Jr., J.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mat. Aplic. Comp. 10(2), 137\u2013160 (1991)","journal-title":"Mat. Aplic. Comp."},{"issue":"3","key":"911_CR6","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1093\/imanum\/1.3.253","volume":"1","author":"I Christie","year":"1981","unstructured":"Christie, I., Griffiths, D.F., Mitchell, A.R., Sanz-Serna, J.M.: Product approximation for nonlinear problems in the finite element method. IMA J. Numer. Anal. 1(3), 253\u2013266 (1981)","journal-title":"IMA J. Numer. Anal."},{"key":"911_CR7","unstructured":"Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G., Brezzi, F., Cagniani, A., Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lect. Notes Comput. Sci. Engrg., vol. 114, pp. 129\u2013177. Springer, Berlin (2016). LMS Durham Symposia funded by the London Mathematical Society. Durham, U.K., on July 8\u201316 (2014)"},{"issue":"1","key":"911_CR8","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1051\/m2an\/2016016","volume":"51","author":"B Cockburn","year":"2017","unstructured":"Cockburn, B., Fu, G.: Superconvergence by $$M$$-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165\u2013186 (2017)","journal-title":"ESAIM Math. Model. Numer. Anal."},{"issue":"1","key":"911_CR9","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1051\/m2an\/2016023","volume":"51","author":"B Cockburn","year":"2017","unstructured":"Cockburn, B., Fu, G.: Superconvergence by $$M$$-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365\u2013398 (2017)","journal-title":"ESAIM Math. Model. Numer. Anal."},{"issue":"306","key":"911_CR10","doi-asserted-by":"publisher","first-page":"1609","DOI":"10.1090\/mcom\/3140","volume":"86","author":"B Cockburn","year":"2017","unstructured":"Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by $$M$$-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comput. 86(306), 1609\u20131641 (2017)","journal-title":"Math. Comput."},{"issue":"2","key":"911_CR11","doi-asserted-by":"publisher","first-page":"1319","DOI":"10.1137\/070706616","volume":"47","author":"B Cockburn","year":"2009","unstructured":"Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319\u20131365 (2009). \n https:\/\/doi.org\/10.1137\/070706616","journal-title":"SIAM J. Numer. Anal."},{"issue":"271","key":"911_CR12","doi-asserted-by":"publisher","first-page":"1351","DOI":"10.1090\/S0025-5718-10-02334-3","volume":"79","author":"B Cockburn","year":"2010","unstructured":"Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comput. 79(271), 1351\u20131367 (2010). \n https:\/\/doi.org\/10.1090\/S0025-5718-10-02334-3","journal-title":"Math. Comput."},{"issue":"1","key":"911_CR13","doi-asserted-by":"publisher","first-page":"A545","DOI":"10.1137\/15M1008014","volume":"38","author":"B Cockburn","year":"2016","unstructured":"Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the $$p$$-Laplacian. SIAM J. Sci. Comput. 38(1), A545\u2013A566 (2016). \n https:\/\/doi.org\/10.1137\/15M1008014","journal-title":"SIAM J. Sci. Comput."},{"issue":"2","key":"911_CR14","first-page":"356","volume":"7","author":"BT Dickinson","year":"2010","unstructured":"Dickinson, B.T., Singler, J.R.: Nonlinear model reduction using group proper orthogonal decomposition. Int. J. Numer. Anal. Model. 7(2), 356\u2013372 (2010)","journal-title":"Int. J. Numer. Anal. Model."},{"issue":"130","key":"911_CR15","doi-asserted-by":"publisher","first-page":"360","DOI":"10.1090\/S0025-5718-1975-0502033-7","volume":"20","author":"J Douglas Jr","year":"1975","unstructured":"Douglas Jr., J., Dupont, T.: The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures. Math. Comput. 20(130), 360\u2013389 (1975)","journal-title":"Math. Comput."},{"key":"911_CR16","doi-asserted-by":"publisher","DOI":"10.1090\/gsm\/019","volume-title":"Partial Differential Equations, Graduate Studies in Mathematics","author":"LC Evans","year":"2010","unstructured":"Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010). \n https:\/\/doi.org\/10.1090\/gsm\/019","edition":"2"},{"issue":"2","key":"911_CR17","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1016\/0045-7825(83)90122-6","volume":"37","author":"CAJ Fletcher","year":"1983","unstructured":"Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37(2), 225\u2013244 (1983). \n https:\/\/doi.org\/10.1016\/0045-7825(83)90122-6","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"911_CR18","unstructured":"Fletcher, C.A.J.: Time-splitting and the group finite element formulation. In: Computational Techniques and Applications: CTAC-83 (Sydney, 1983), pp. 517\u2013532. North-Holland, Amsterdam (1984)"},{"issue":"3","key":"911_CR19","doi-asserted-by":"publisher","first-page":"1270","DOI":"10.1007\/s10915-015-0008-5","volume":"65","author":"GN Gatica","year":"2015","unstructured":"Gatica, G.N., Sequeira, F.A.: Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65(3), 1270\u20131308 (2015). \n https:\/\/doi.org\/10.1007\/s10915-015-0008-5","journal-title":"J. Sci. Comput."},{"key":"911_CR20","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1016\/j.cma.2014.08.012","volume":"283","author":"H Kabaria","year":"2015","unstructured":"Kabaria, H., Lew, A.J., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303\u2013329 (2015)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"issue":"2","key":"911_CR21","doi-asserted-by":"publisher","first-page":"267","DOI":"10.4134\/JKMS.2014.51.2.267","volume":"51","author":"D Kim","year":"2014","unstructured":"Kim, D., Park, E.J., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51(2), 267\u2013288 (2014). \n https:\/\/doi.org\/10.4134\/JKMS.2014.51.2.267","journal-title":"J. Korean Math. Soc."},{"issue":"1","key":"911_CR22","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1002\/mma.1670110108","volume":"11","author":"S Larsson","year":"1989","unstructured":"Larsson, S., Thom\u00e9e, V., Zhang, N.Y.: Interpolation of coefficients and transformation of the dependent variable in finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11(1), 105\u2013124 (1989). \n https:\/\/doi.org\/10.1002\/mma.1670110108","journal-title":"Math. Methods Appl. Sci."},{"issue":"1","key":"911_CR23","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1093\/imanum\/8.1.71","volume":"8","author":"JC L\u00f3pez Marcos","year":"1988","unstructured":"L\u00f3pez Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability. IMA J. Numer. Anal. 8(1), 71\u201384 (1988)","journal-title":"IMA J. Numer. Anal."},{"key":"911_CR24","doi-asserted-by":"publisher","first-page":"950","DOI":"10.1002\/nme.4300","volume":"91","author":"DaCN Moro","year":"2012","unstructured":"Moro, DaCN, Peraire, J.: A hybridized discontinuous Petrov\u2013Galerkin scheme for scalar conservation laws. Int. J. Numer. Methods Eng. 91, 950\u2013970 (2012)","journal-title":"Int. J. Numer. Methods Eng."},{"key":"911_CR25","doi-asserted-by":"publisher","first-page":"5955","DOI":"10.1016\/j.jcp.2012.02.033","volume":"231","author":"NC Nguyen","year":"2012","unstructured":"Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231, 5955\u20135988 (2012)","journal-title":"J. Comput. Phys."},{"issue":"23","key":"911_CR26","doi-asserted-by":"publisher","first-page":"8841","DOI":"10.1016\/j.jcp.2009.08.030","volume":"228","author":"NC Nguyen","year":"2009","unstructured":"Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection\u2013diffusion equations. J. Comput. Phys. 228(23), 8841\u20138855 (2009). \n https:\/\/doi.org\/10.1016\/j.jcp.2009.08.030","journal-title":"J. Comput. Phys."},{"key":"911_CR27","doi-asserted-by":"crossref","unstructured":"Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier\u2013Stokes equations (AIAA Paper 2010-362). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit. Orlando, Florida (2010)","DOI":"10.2514\/6.2010-362"},{"issue":"4","key":"911_CR28","doi-asserted-by":"publisher","first-page":"1147","DOI":"10.1016\/j.jcp.2010.10.032","volume":"230","author":"NC Nguyen","year":"2011","unstructured":"Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier\u2013Stokes equations. J. Comput. Phys. 230(4), 1147\u20131170 (2011). \n https:\/\/doi.org\/10.1016\/j.jcp.2010.10.032","journal-title":"J. Comput. Phys."},{"key":"911_CR29","doi-asserted-by":"publisher","first-page":"674","DOI":"10.1016\/j.jcp.2015.09.024","volume":"302","author":"NC Nguyen","year":"2015","unstructured":"Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674\u2013692 (2015)","journal-title":"J. Comput. Phys."},{"key":"911_CR30","doi-asserted-by":"crossref","unstructured":"Peraire, J., Nguyen, N.C., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier\u2013Stokes equations (AIAA Paper 2010-363). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit. Orlando, Florida (2010)","DOI":"10.2514\/6.2010-363"},{"key":"911_CR31","doi-asserted-by":"publisher","unstructured":"Rivi\u00e8re, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. In: Frontiers in Applied Mathematics, vol.\u00a035. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). \n https:\/\/doi.org\/10.1137\/1.9780898717440","DOI":"10.1137\/1.9780898717440"},{"issue":"1","key":"911_CR32","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1137\/0721004","volume":"21","author":"JM Sanz-Serna","year":"1984","unstructured":"Sanz-Serna, J.M., Abia, L.: Interpolation of the coefficients in nonlinear elliptic Galerkin procedures. SIAM J. Numer. Anal. 21(1), 77\u201383 (1984). \n https:\/\/doi.org\/10.1137\/0721004","journal-title":"SIAM J. Numer. Anal."},{"issue":"3","key":"911_CR33","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1093\/imanum\/10.3.449","volume":"10","author":"Y Tourigny","year":"1990","unstructured":"Tourigny, Y.: Product approximation for nonlinear Klein\u2013Gordon equations. IMA J. Numer. Anal. 10(3), 449\u2013462 (1990). \n https:\/\/doi.org\/10.1093\/imanum\/10.3.449","journal-title":"IMA J. Numer. Anal."},{"key":"911_CR34","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1016\/j.jcp.2015.11.028","volume":"306","author":"MP Ueckermann","year":"2016","unstructured":"Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier\u2013Stokes and Boussinesq equations. J. Comput. Phys. 306, 390\u2013421 (2016). \n https:\/\/doi.org\/10.1016\/j.jcp.2015.11.028","journal-title":"J. Comput. Phys."},{"issue":"2","key":"911_CR35","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1002\/num.20526","volume":"27","author":"C Wang","year":"2011","unstructured":"Wang, C.: Convergence of the interpolated coefficient finite element method for the two-dimensional elliptic sine-Gordon equations. Numer. Methods Partial Differ. Equ. 27(2), 387\u2013398 (2011). \n https:\/\/doi.org\/10.1002\/num.20526","journal-title":"Numer. Methods Partial Differ. Equ."},{"issue":"6","key":"911_CR36","doi-asserted-by":"publisher","first-page":"1713","DOI":"10.1002\/num.21961","volume":"31","author":"Z Wang","year":"2015","unstructured":"Wang, Z.: Nonlinear model reduction based on the finite element method with interpolated coefficients: semilinear parabolic equations. Numer. Methods Partial Differ. Equ. 31(6), 1713\u20131741 (2015). \n https:\/\/doi.org\/10.1002\/num.21961","journal-title":"Numer. Methods Partial Differ. Equ."},{"issue":"1","key":"911_CR37","first-page":"97","volume":"2","author":"Z Xie","year":"2005","unstructured":"Xie, Z., Chen, C.: The interpolated coefficient FEM and its application in computing the multiple solutions of semilinear elliptic problems. Int. J. Numer. Anal. Model. 2(1), 97\u2013106 (2005)","journal-title":"Int. J. Numer. Anal. Model."},{"issue":"2","key":"911_CR38","doi-asserted-by":"publisher","first-page":"1577","DOI":"10.1016\/j.amc.2006.02.040","volume":"181","author":"Z Xiong","year":"2006","unstructured":"Xiong, Z., Chen, C.: Superconvergence of rectangular finite element with interpolated coefficients for semilinear elliptic problem. Appl. Math. Comput. 181(2), 1577\u20131584 (2006). \n https:\/\/doi.org\/10.1016\/j.amc.2006.02.040","journal-title":"Appl. Math. Comput."},{"issue":"2","key":"911_CR39","doi-asserted-by":"publisher","first-page":"901","DOI":"10.1016\/j.amc.2006.05.192","volume":"184","author":"Z Xiong","year":"2007","unstructured":"Xiong, Z., Chen, C.: Superconvergence of triangular quadratic finite element with interpolated coefficients for semilinear parabolic equation. Appl. Math. Comput. 184(2), 901\u2013907 (2007). \n https:\/\/doi.org\/10.1016\/j.amc.2006.05.192","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"911_CR40","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1016\/j.cam.2007.02.023","volume":"214","author":"Z Xiong","year":"2008","unstructured":"Xiong, Z., Chen, Y., Zhang, Y.: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation. J. Comput. Appl. Math. 214(1), 313\u2013317 (2008). \n https:\/\/doi.org\/10.1016\/j.cam.2007.02.023","journal-title":"J. Comput. Appl. Math."}],"container-title":["Journal of Scientific Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-019-00911-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10915-019-00911-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-019-00911-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,17]],"date-time":"2020-05-17T09:39:57Z","timestamp":1589708397000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10915-019-00911-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1,22]]},"references-count":40,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,6]]}},"alternative-id":["911"],"URL":"https:\/\/doi.org\/10.1007\/s10915-019-00911-8","relation":{},"ISSN":["0885-7474","1573-7691"],"issn-type":[{"value":"0885-7474","type":"print"},{"value":"1573-7691","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,1,22]]},"assertion":[{"value":"10 February 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 December 2018","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 January 2019","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 January 2019","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with Ethical Standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}