{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:39:43Z","timestamp":1740123583060,"version":"3.37.3"},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2017,6,29]],"date-time":"2017-06-29T00:00:00Z","timestamp":1498694400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,6,29]],"date-time":"2017-06-29T00:00:00Z","timestamp":1498694400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DMS-1620194"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["91630207","11571115"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11471194"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","award":["ZR2011AM015"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sci Comput"],"published-print":{"date-parts":[[2018,2]]},"DOI":"10.1007\/s10915-017-0478-8","type":"journal-article","created":{"date-parts":[[2017,6,29]],"date-time":"2017-06-29T09:29:50Z","timestamp":1498728590000},"page":"1009-1033","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["A Fast Finite Difference Method for Three-Dimensional Time-Dependent Space-Fractional Diffusion Equations with Fractional Derivative Boundary Conditions"],"prefix":"10.1007","volume":"74","author":[{"given":"Meng","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Hong","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8547-3189","authenticated-orcid":false,"given":"Aijie","family":"Cheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,6,29]]},"reference":[{"issue":"1","key":"478_CR1","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1090\/tran\/6360","volume":"368","author":"B Baeumer","year":"2016","unstructured":"Baeumer, B., Kovcs, M., Meerschaert, M., Schilling, R., Straka, P.: Reflected spectrally negative stable processes and their governing equations. Trans. Am. Math. Soc. 368(1), 227\u2013248 (2016)","journal-title":"Trans. Am. Math. Soc."},{"issue":"6","key":"478_CR2","doi-asserted-by":"publisher","first-page":"1413","DOI":"10.1029\/2000WR900032","volume":"36","author":"DA Benson","year":"2000","unstructured":"Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of L\u00e9vy motion. Water Resour. Res. 36(6), 1413\u20131423 (2000)","journal-title":"Water Resour. Res."},{"issue":"3","key":"478_CR3","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1137\/S0036144594276474","volume":"38","author":"RH Chan","year":"1996","unstructured":"Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427\u2013482 (1996)","journal-title":"SIAM Rev."},{"key":"478_CR4","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1016\/j.amc.2014.08.031","volume":"257","author":"S Chen","year":"2015","unstructured":"Chen, S., Liu, F., Jiang, X., Turner, I., Anh, V.: A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients. Appl. Math. Comput. 257, 591\u2013601 (2015)","journal-title":"Appl. Math. Comput."},{"issue":"300","key":"478_CR5","doi-asserted-by":"publisher","first-page":"1603","DOI":"10.1090\/mcom3035","volume":"85","author":"S Chen","year":"2016","unstructured":"Chen, S., Jie, S., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603\u20131638 (2016)","journal-title":"Math. Comput."},{"issue":"6","key":"478_CR6","doi-asserted-by":"publisher","first-page":"2621","DOI":"10.1016\/j.jcp.2011.12.010","volume":"231","author":"M Cui","year":"2012","unstructured":"Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231(6), 2621\u20132633 (2012)","journal-title":"J. Comput. Phys."},{"issue":"1","key":"478_CR7","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1137\/080714130","volume":"47","author":"W Deng","year":"2008","unstructured":"Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204\u2013226 (2008)","journal-title":"SIAM J. Numer. Anal."},{"issue":"3","key":"478_CR8","doi-asserted-by":"publisher","first-page":"A1614","DOI":"10.1137\/15M1007458","volume":"37","author":"N Du","year":"2015","unstructured":"Du, N., Wang, H.: A fast finite element method for space-fractional dispersion equations on bounded domains in $$\\mathbb{R}^2$$. SIAM J. Sci. Comput. 37(3), A1614\u2013A1635 (2015)","journal-title":"SIAM J. Sci. Comput."},{"issue":"2","key":"478_CR9","doi-asserted-by":"publisher","first-page":"256","DOI":"10.1002\/num.20169","volume":"23","author":"VJ Ervin","year":"2007","unstructured":"Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in $$R^d$$. Numer. Methods Partial Differ. Equ. 23(2), 256\u2013281 (2007)","journal-title":"Numer. Methods Partial Differ. Equ."},{"key":"478_CR10","unstructured":"Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-Dimensional distributed-Order fractional diffusion equations. J. Sci. Comput. 66(3), 1\u201332 (2015)"},{"key":"478_CR11","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1016\/j.jcp.2014.08.021","volume":"293","author":"J Jia","year":"2015","unstructured":"Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359\u2013369 (2015)","journal-title":"J. Comput. Phys."},{"key":"478_CR12","doi-asserted-by":"publisher","first-page":"842","DOI":"10.1016\/j.jcp.2015.06.028","volume":"299","author":"J Jia","year":"2015","unstructured":"Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842\u2013862 (2015)","journal-title":"J. Comput. Phys."},{"key":"478_CR13","doi-asserted-by":"publisher","first-page":"715","DOI":"10.1016\/j.jcp.2013.02.025","volume":"242","author":"SL Lei","year":"2013","unstructured":"Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715\u2013725 (2013)","journal-title":"J. Comput. Phys."},{"key":"478_CR14","doi-asserted-by":"publisher","first-page":"1533","DOI":"10.1016\/j.jcp.2007.02.001","volume":"225","author":"Y Lin","year":"2007","unstructured":"Lin, Y., Xu, C.: Finite difference\/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533\u20131552 (2007)","journal-title":"J. Comput. Phys."},{"key":"478_CR15","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/j.cam.2003.09.028","volume":"166","author":"F Liu","year":"2004","unstructured":"Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209\u2013219 (2004)","journal-title":"J. Comput. Appl. Math."},{"issue":"2","key":"478_CR16","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.physletb.2009.07.024","volume":"679","author":"SC Lim","year":"2009","unstructured":"Lim, S.C., Teo, L.P.: Repulsive Casimir force from fractional Neumann boundary conditions. Phys. Lett. B 679(2), 130\u2013137 (2009)","journal-title":"Phys. Lett. B"},{"key":"478_CR17","doi-asserted-by":"publisher","first-page":"406","DOI":"10.1016\/j.jcp.2003.07.008","volume":"192","author":"VE Lynch","year":"2003","unstructured":"Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406\u2013421 (2003)","journal-title":"J. Comput. Phys."},{"key":"478_CR18","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1016\/j.cam.2004.01.033","volume":"172","author":"MM Meerschaert","year":"2004","unstructured":"Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65\u201377 (2004)","journal-title":"J. Comput. Appl. Math."},{"issue":"1","key":"478_CR19","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1016\/j.apnum.2005.02.008","volume":"56","author":"MM Meerschaert","year":"2006","unstructured":"Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80\u201390 (2006)","journal-title":"Appl. Numer. Math."},{"key":"478_CR20","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1016\/j.jcp.2005.05.017","volume":"211","author":"MM Meerschaert","year":"2006","unstructured":"Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249\u2013261 (2006)","journal-title":"J. Comput. Phys."},{"key":"478_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0370-1573(00)00070-3","volume":"339","author":"R Metzler","year":"2000","unstructured":"Metzler, R., Klafter, J.: The random walk\u2019s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1\u201377 (2000)","journal-title":"Phys. Rep."},{"key":"478_CR22","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1016\/j.jcp.2015.11.047","volume":"307","author":"ZP Mao","year":"2016","unstructured":"Mao, Z.P., Jie, S.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243\u2013261 (2016)","journal-title":"J. Comput. Phys."},{"key":"478_CR23","volume-title":"Fractional Differential Equations","author":"I Podlubny","year":"1999","unstructured":"Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)"},{"key":"478_CR24","doi-asserted-by":"publisher","first-page":"2719","DOI":"10.1016\/j.physa.2010.02.030","volume":"389","author":"HG Sun","year":"2010","unstructured":"Sun, H.G., Chen, W., Chen, Y.Q.: Fractional differential models for anomalous diffusion. Phys. A 389, 2719\u20132724 (2010)","journal-title":"Phys. A"},{"key":"478_CR25","doi-asserted-by":"publisher","first-page":"A2444","DOI":"10.1137\/12086491X","volume":"34","author":"H Wang","year":"2012","unstructured":"Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444\u2013A2458 (2012)","journal-title":"SIAM J. Sci. Comput."},{"key":"478_CR26","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.jcp.2012.07.045","volume":"240","author":"H Wang","year":"2013","unstructured":"Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49\u201357 (2013)","journal-title":"J. Comput. Phys."},{"key":"478_CR27","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1016\/j.jcp.2013.06.040","volume":"253","author":"H Wang","year":"2013","unstructured":"Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50\u201363 (2013)","journal-title":"J. Comput. Phys."},{"key":"478_CR28","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1016\/j.jcp.2013.10.040","volume":"258","author":"H Wang","year":"2013","unstructured":"Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305\u2013318 (2013)","journal-title":"J. Comput. Phys."},{"key":"478_CR29","doi-asserted-by":"publisher","first-page":"8095","DOI":"10.1016\/j.jcp.2010.07.011","volume":"229","author":"H Wang","year":"2010","unstructured":"Wang, H., Wang, K., Sircar, T.: A direct $$O(N\\log ^2 N)$$ finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095\u20138104 (2010)","journal-title":"J. Comput. Phys."},{"issue":"1","key":"478_CR30","doi-asserted-by":"publisher","first-page":"A360","DOI":"10.1137\/16M1076083","volume":"39","author":"FH Zeng","year":"2017","unstructured":"Zeng, F.H., Mao, Z.P., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39(1), A360\u2013A383 (2017)","journal-title":"SIAM J. Sci. Comput."},{"key":"478_CR31","doi-asserted-by":"publisher","first-page":"1205","DOI":"10.1016\/j.advwatres.2006.11.002","volume":"30","author":"X Zhang","year":"2007","unstructured":"Zhang, X., Lv, M., Crawford, J.W., Young, I.M.: The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the caputo derivatives. Adv. Water Resour. 30, 1205\u20131217 (2007)","journal-title":"Adv. Water Resour."},{"key":"478_CR32","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1016\/j.amc.2009.05.018","volume":"215","author":"Y Zhang","year":"2009","unstructured":"Zhang, Y.: A finite difference method for fractional partial differential equation. Appl. Math. Comput. 215, 524\u2013529 (2009)","journal-title":"Appl. Math. Comput."},{"key":"478_CR33","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.jcp.2014.08.015","volume":"293","author":"X Zhao","year":"2015","unstructured":"Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184\u2013200 (2015)","journal-title":"J. Comput. Phys."},{"key":"478_CR34","doi-asserted-by":"publisher","first-page":"1718","DOI":"10.1016\/j.camwa.2009.08.071","volume":"59","author":"Y Zheng","year":"2010","unstructured":"Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718\u20131726 (2010)","journal-title":"Comput. Math. Appl."}],"container-title":["Journal of Scientific Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10915-017-0478-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-017-0478-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-017-0478-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,30]],"date-time":"2022-07-30T04:13:19Z","timestamp":1659154399000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10915-017-0478-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6,29]]},"references-count":34,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2018,2]]}},"alternative-id":["478"],"URL":"https:\/\/doi.org\/10.1007\/s10915-017-0478-8","relation":{},"ISSN":["0885-7474","1573-7691"],"issn-type":[{"type":"print","value":"0885-7474"},{"type":"electronic","value":"1573-7691"}],"subject":[],"published":{"date-parts":[[2017,6,29]]},"assertion":[{"value":"17 March 2016","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 March 2017","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 June 2017","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 June 2017","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}