{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T10:19:26Z","timestamp":1742638766489,"version":"3.37.3"},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2016,11,16]],"date-time":"2016-11-16T00:00:00Z","timestamp":1479254400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"the National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["11372170","11561060"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"the Scientific Research Program for Young Teachers of Tianshui Normal University","award":["TSA1405"]},{"name":"Tianshui Normal University Key Construction Subject Project (Big data processing in dynamic image)"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Sci Comput"],"published-print":{"date-parts":[[2017,5]]},"DOI":"10.1007\/s10915-016-0317-3","type":"journal-article","created":{"date-parts":[[2016,11,17]],"date-time":"2016-11-17T02:16:29Z","timestamp":1479348989000},"page":"759-784","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":81,"title":["High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions"],"prefix":"10.1007","volume":"71","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4044-6499","authenticated-orcid":false,"given":"Hengfei","family":"Ding","sequence":"first","affiliation":[]},{"given":"Changpin","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,11,16]]},"reference":[{"key":"317_CR1","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1016\/j.jcp.2014.09.031","volume":"280","author":"AA Alikhanov","year":"2015","unstructured":"Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424\u2013438 (2015)","journal-title":"J. Comput. Phys."},{"key":"317_CR2","volume-title":"Generalized Hypergeometric Series","author":"WN Bailey","year":"1964","unstructured":"Bailey, W.N.: Generalized Hypergeometric Series. Stechert-Hafner Inc, New York (1964)"},{"key":"317_CR3","doi-asserted-by":"crossref","first-page":"1743","DOI":"10.1016\/j.jcp.2011.11.008","volume":"231","author":"C \u00c7elik","year":"2012","unstructured":"\u00c7elik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743\u20131750 (2012)","journal-title":"J. Comput. Phys."},{"key":"317_CR4","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1093\/imanum\/11.3.333","volume":"11","author":"RH Chan","year":"1991","unstructured":"Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333\u2013345 (1991)","journal-title":"IMA J. Numer. Anal."},{"key":"317_CR5","doi-asserted-by":"crossref","DOI":"10.1137\/1.9780898718850","volume-title":"An Introduction to Iterative Toeplitz Solvers","author":"RH Chan","year":"2007","unstructured":"Chan, R.H., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)"},{"key":"317_CR6","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1137\/130933447","volume":"52","author":"MH Chen","year":"2014","unstructured":"Chen, M.H., Deng, W.H.: WSLD operators: a class of fourth order difference approximations for space Riemann\u2013Liouville derivative. SIAM J. Numer. Anal. 52, 1418\u20131438 (2014)","journal-title":"SIAM J. Numer. Anal."},{"key":"317_CR7","unstructured":"Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 79, 807\u2013827 (2016)"},{"key":"317_CR8","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.cam.2014.09.028","volume":"278","author":"S Chen","year":"2015","unstructured":"Chen, S., Jiang, X., Liu, F., Turner, I.: High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J. Comput. Appl. Math. 278, 119\u2013129 (2015)","journal-title":"J. Comput. Appl. Math."},{"key":"317_CR9","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.jcp.2014.06.007","volume":"293","author":"HF Ding","year":"2015","unstructured":"Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218\u2013237 (2015)","journal-title":"J. Comput. Phys."},{"key":"317_CR10","doi-asserted-by":"crossref","first-page":"558","DOI":"10.1002\/num.20112","volume":"22","author":"VJ Ervin","year":"2006","unstructured":"Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558\u2013576 (2006)","journal-title":"Numer. Methods Partial Differ. Equ."},{"key":"317_CR11","unstructured":"Feller, W.: On a generalization of Marcel Riesz\u2019 potentials and the semi-groups generated by them. Commun. S\u00e9m. Math. Univ. Lund. 1, 73\u201381 (1952)"},{"key":"317_CR12","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.jcp.2014.09.023","volume":"293","author":"R Garrappaa","year":"2015","unstructured":"Garrappaa, R., Moretb, I., Popolizioc, M.: Solving the time-fractional Schr\u00f6dinger equation by Krylov projection methods. J. Comput. Phys. 293, 115\u2013134 (2015)","journal-title":"J. Comput. Phys."},{"key":"317_CR13","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1007\/s11075-012-9689-0","volume":"64","author":"J Huang","year":"2013","unstructured":"Huang, J., Tang, Y., V\u00e1zquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707\u2013720 (2013)","journal-title":"Numer. Algorithms"},{"key":"317_CR14","volume-title":"Theory and Applications of Fractional Differential Equations","author":"AA Kilbas","year":"2006","unstructured":"Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)"},{"key":"317_CR15","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1137\/0517050","volume":"17","author":"C Lubich","year":"1986","unstructured":"Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704\u2013719 (1986)","journal-title":"SIAM J. Math. Anal."},{"key":"317_CR16","doi-asserted-by":"crossref","first-page":"3802","DOI":"10.1016\/j.apm.2013.12.002","volume":"38","author":"CP Li","year":"2014","unstructured":"Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802\u20133821 (2014)","journal-title":"Appl. Math. Model."},{"key":"317_CR17","volume-title":"An Introduction to the Fractional Calculus and Fractional Differential Equations","author":"KS Miller","year":"1993","unstructured":"Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)"},{"key":"317_CR18","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.cam.2004.01.033","volume":"172","author":"MM Meerschaert","year":"2004","unstructured":"Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection\u2013dispersion flow equations. J. Comput. Appl. Math. 172, 65\u201377 (2004)","journal-title":"J. Comput. Appl. Math."},{"key":"317_CR19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0370-1573(00)00070-3","volume":"339","author":"R Metzler","year":"2000","unstructured":"Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1\u201377 (2000)","journal-title":"Phys. Rep."},{"key":"317_CR20","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-50824-0","volume-title":"Vorlesungen \u00fcber Differenzenrechnung","author":"NE N\u00f6rlund","year":"1924","unstructured":"N\u00f6rlund, N.E.: Vorlesungen \u00fcber Differenzenrechnung. Springer, Berlin (1924)"},{"key":"317_CR21","unstructured":"Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391, 1\u20132 (2006)"},{"key":"317_CR22","volume-title":"The Fractional Calculus","author":"KB Oldham","year":"1974","unstructured":"Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)"},{"key":"317_CR23","volume-title":"Fractional Differential Equations","author":"I Podlubny","year":"1999","unstructured":"Podlubny, I.: Fractional Differential Equations. Academin Press, San Diego (1999)"},{"key":"317_CR24","doi-asserted-by":"crossref","DOI":"10.1007\/b98885","volume-title":"Numerical Mathematics","author":"A Quarteroni","year":"2007","unstructured":"Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, New York (2007)","edition":"2"},{"key":"317_CR25","volume-title":"Perspectives on Automatic Differentiation: Past, Present, and Future? Automatic Differentiation: Applications, Theory, and Implementations","author":"LB Rall","year":"2006","unstructured":"Rall, L.B.: Perspectives on Automatic Differentiation: Past, Present, and Future? Automatic Differentiation: Applications, Theory, and Implementations. Springer, Berlin (2006)"},{"key":"317_CR26","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/0022-247X(88)90326-5","volume":"130","author":"HM Srivastava","year":"1988","unstructured":"Srivastava, H.M.: An explicit formula for the generalized Bernoulli polynomials. J. Math. Anal. Appl. 130, 509\u2013513 (1988)","journal-title":"J. Math. Anal. Appl."},{"key":"317_CR27","volume-title":"Fractional Integrals and Derivatives, Theory and Applications","author":"SG Samko","year":"1993","unstructured":"Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, London (1993)"},{"key":"317_CR28","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1063\/1.166272","volume":"7","author":"AI Saichev","year":"1997","unstructured":"Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7, 753\u2013764 (1997)","journal-title":"Chaos"},{"key":"317_CR29","doi-asserted-by":"crossref","first-page":"133","DOI":"10.2140\/pjm.1951.1.133","volume":"1","author":"FG Tricomi","year":"1951","unstructured":"Tricomi, F.G., Erd\u00e9lyi, A.: The asymptotic expansion of a ratio of Gamma functions. Pac. J. Math. 1, 133\u2013142 (1951)","journal-title":"Pac. J. Math."},{"key":"317_CR30","doi-asserted-by":"crossref","first-page":"1703","DOI":"10.1090\/S0025-5718-2015-02917-2","volume":"84","author":"WY Tian","year":"2015","unstructured":"Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703\u20131727 (2015)","journal-title":"Math. Comput."},{"key":"317_CR31","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.jcp.2013.10.040","volume":"258","author":"H Wang","year":"2014","unstructured":"Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305\u2013318 (2014)","journal-title":"J. Comput. Phys."},{"key":"317_CR32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jcp.2014.08.012","volume":"277","author":"Z Wang","year":"2014","unstructured":"Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1\u201315 (2014)","journal-title":"J. Comput. Phys."},{"key":"317_CR33","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.jcp.2014.11.034","volume":"293","author":"Q Xu","year":"2015","unstructured":"Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173\u2013183 (2015)","journal-title":"J. Comput. Phys."},{"key":"317_CR34","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1137\/030602666","volume":"42","author":"SB Yuste","year":"2005","unstructured":"Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862\u20131874 (2005)","journal-title":"SIAM J. Numer. Anal."},{"key":"317_CR35","doi-asserted-by":"crossref","first-page":"A40","DOI":"10.1137\/130933216","volume":"36","author":"M Zayernouri","year":"2014","unstructured":"Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36, A40\u2013A62 (2014)","journal-title":"SIAM J. Sci. Comput."},{"key":"317_CR36","doi-asserted-by":"crossref","first-page":"A2976","DOI":"10.1137\/130910865","volume":"35","author":"FH Zeng","year":"2013","unstructured":"Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: The use of finite difference\/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976\u2013A3000 (2013)","journal-title":"SIAM J. Sci. Comput."},{"key":"317_CR37","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1007\/s10915-014-9874-5","volume":"62","author":"X Zhao","year":"2015","unstructured":"Zhao, X., Sun, Z.Z.: Compact Crank\u2013Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747\u2013771 (2015)","journal-title":"J. Sci. Comput."},{"key":"317_CR38","doi-asserted-by":"crossref","first-page":"A2865","DOI":"10.1137\/140961560","volume":"36","author":"X Zhao","year":"2014","unstructured":"Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 36, A2865\u2013A2886 (2014)","journal-title":"SIAM J. Sci. Comput."}],"container-title":["Journal of Scientific Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-016-0317-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10915-016-0317-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10915-016-0317-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,6,24]],"date-time":"2017-06-24T23:48:23Z","timestamp":1498348103000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10915-016-0317-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,11,16]]},"references-count":38,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2017,5]]}},"alternative-id":["317"],"URL":"https:\/\/doi.org\/10.1007\/s10915-016-0317-3","relation":{},"ISSN":["0885-7474","1573-7691"],"issn-type":[{"type":"print","value":"0885-7474"},{"type":"electronic","value":"1573-7691"}],"subject":[],"published":{"date-parts":[[2016,11,16]]}}}