{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T04:40:33Z","timestamp":1724733633224},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,3,30]],"date-time":"2021-03-30T00:00:00Z","timestamp":1617062400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,3,30]],"date-time":"2021-03-30T00:00:00Z","timestamp":1617062400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"FEDER INTERREG VA"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Intell Robot Syst"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1007\/s10846-021-01341-1","type":"journal-article","created":{"date-parts":[[2021,3,30]],"date-time":"2021-03-30T12:02:51Z","timestamp":1617105771000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Evaluation of Prioritized Deep System Identification on a Path Following Task"],"prefix":"10.1007","volume":"101","author":[{"given":"Antoine","family":"Mah\u00e9","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4018-699X","authenticated-orcid":false,"given":"Antoine","family":"Richard","sequence":"additional","affiliation":[]},{"given":"St\u00e9phanie","family":"Aravecchia","sequence":"additional","affiliation":[]},{"given":"Matthieu","family":"Geist","sequence":"additional","affiliation":[]},{"given":"C\u00e9dric","family":"Pradalier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,30]]},"reference":[{"key":"1341_CR1","unstructured":"Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 (2016)"},{"issue":"2","key":"1341_CR2","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1016\/j.isatra.2010.12.007","volume":"50","author":"VA Akpan","year":"2011","unstructured":"Akpan, V.A., Hassapis, G.D.: Nonlinear model identification and adaptive model predictive control using neural networks. ISA Trans. 50(2), 177\u2013194 (2011)","journal-title":"ISA Trans."},{"key":"1341_CR3","unstructured":"Alain, G., Lamb, A., Sankar, C., Courville, A., Bengio, Y.: Variance reduction in sgd by distributed importance sampling. arXiv:1511.06481 (2015)"},{"key":"1341_CR4","unstructured":"Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. Advances in Neural Information Processing Systems. 33 (2020)"},{"key":"1341_CR5","doi-asserted-by":"crossref","unstructured":"Dentler, J., Kannan, S., Mendez, M.A.O., Voos, H.: A tracking error control approach for model predictive position control of a quadrotor with time varying reference. In: Robotics and Biomimetics (ROBIO), 2016 IEEE International Conference On, pp. 2051\u20132056 (2016)","DOI":"10.1109\/ROBIO.2016.7866631"},{"key":"1341_CR6","unstructured":"Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050\u20131059 (2016)"},{"issue":"13","key":"1341_CR7","doi-asserted-by":"publisher","first-page":"485","DOI":"10.1016\/j.ifacol.2018.07.326","volume":"51","author":"J Gonzalez","year":"2018","unstructured":"Gonzalez, J., Yu, W.: Non-linear system modeling using lstm neural networks. IFAC-PapersOnLine 51(13), 485\u2013489 (2018)","journal-title":"IFAC-PapersOnLine"},{"issue":"8","key":"1341_CR8","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"1341_CR9","unstructured":"Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt, H., Silver, D.: Distributed prioritized experience replay. arXiv:1803.00933 (2018)"},{"issue":"4","key":"1341_CR10","doi-asserted-by":"publisher","first-page":"2096","DOI":"10.1109\/LRA.2017.2720851","volume":"2","author":"J Hwangbo","year":"2017","unstructured":"Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2(4), 2096\u20132103 (2017)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"1341_CR11","unstructured":"Katharopoulos, A., Fleuret, F.: Biased importance sampling for deep neural network training. arXiv:1706.00043 (2017)"},{"key":"1341_CR12","unstructured":"Katharopoulos, A., Fleuret, F.: Not all samples are created equal: Deep learning with importance sampling. arXiv:1803.00942 (2018)"},{"key":"1341_CR13","unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980(2014)"},{"issue":"3","key":"1341_CR14","doi-asserted-by":"publisher","first-page":"04017004","DOI":"10.1061\/(ASCE)IS.1943-555X.0000353","volume":"23","author":"D Lattanzi","year":"2017","unstructured":"Lattanzi, D., Miller, G.: Review of robotic infrastructure inspection systems. J Infrastruct. Syst. 23(3), 04017004 (2017)","journal-title":"J Infrastruct. Syst."},{"issue":"1","key":"1341_CR15","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1007\/s10514-006-7806-4","volume":"21","author":"R Lenain","year":"2006","unstructured":"Lenain, R., Thuilot, B., Cariou, C., Martinet, P.: High accuracy path tracking for vehicles in presence of sliding: Application to farm vehicle automatic guidance for agricultural tasks. Auton. Robots 21(1), 79\u201397 (2006)","journal-title":"Auton. Robots"},{"key":"1341_CR16","unstructured":"Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. arXiv:1509.02971 (2015)"},{"key":"1341_CR17","doi-asserted-by":"crossref","unstructured":"Ljung, L.: System identification. In: Signal Analysis and Prediction, pp 163\u2013173. Springer (1998)","DOI":"10.1007\/978-1-4612-1768-8_11"},{"key":"1341_CR18","unstructured":"Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. arXiv:1511.06343 (2015)"},{"key":"1341_CR19","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.conengprac.2015.05.008","volume":"42","author":"E Lucet","year":"2015","unstructured":"Lucet, E., Lenain, R., Grand, C.: Dynamic path tracking control of a vehicle on slippery terrain. Control Eng. Pract. 42, 60\u201373 (2015)","journal-title":"Control Eng. Pract."},{"key":"1341_CR20","unstructured":"Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proc. Icml, vol. 30, p. 3 (2013)"},{"key":"1341_CR21","doi-asserted-by":"publisher","unstructured":"Mah\u00e9, A., Pradalier, C., Geist, M.: Trajectory-control using deep system identication and model predictive control for drone control under uncertain load. In: 2018 22Nd International Conference on System Theory, Control and Computing (ICSTCC), pp. 753\u2013758. https:\/\/doi.org\/10.1109\/ICSTCC.2018.8540719 (2018)","DOI":"10.1109\/ICSTCC.2018.8540719"},{"key":"1341_CR22","doi-asserted-by":"crossref","unstructured":"Mah\u00e9, A., Richard, A., Mouscadet, B., Pradalier, C., Geist, M.: Importance sampling for deep system identification. In: 2019 19Th International Conference on Advanced Robotics (ICAR), pp. 43\u201348. IEEE (2019)","DOI":"10.1109\/ICAR46387.2019.8981590"},{"key":"1341_CR23","unstructured":"Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems, pp. 7047\u20137058 (2018)"},{"issue":"3","key":"1341_CR24","doi-asserted-by":"publisher","first-page":"1696","DOI":"10.1109\/LRA.2017.2665693","volume":"2","author":"T Naegeli","year":"2017","unstructured":"Naegeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., Hilliges, O.: Real-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimization. IEEE Robot. Automat. Lett. 2(3), 1696\u20131703 (2017). https:\/\/doi.org\/10.1109\/LRA.2017.2665693","journal-title":"IEEE Robot. Automat. Lett."},{"key":"1341_CR25","unstructured":"Pannocchia, G.: Offset-free tracking Mpc: a tutorial review and comparison of different formulations. In: Control Conference (ECC), 2015 European, pp. 527\u2013532. IEEE (2015)"},{"issue":"7","key":"1341_CR26","doi-asserted-by":"publisher","first-page":"733","DOI":"10.1016\/S0967-0661(02)00186-7","volume":"11","author":"SJ Qin","year":"2003","unstructured":"Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733\u2013764 (2003)","journal-title":"Control Eng. Pract."},{"key":"1341_CR27","doi-asserted-by":"crossref","unstructured":"Schaal, S., Atkeson, C.G., Vijayakumar, S.: Real-time robot learning with locally weighted statistical learning. In: Robotics and Automation, 2000. Proceedings. ICRA\u201900. IEEE International Conference On, vol. 1, pp. 288\u2013293 (2000)","DOI":"10.1109\/ROBOT.2000.844072"},{"key":"1341_CR28","unstructured":"Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv:1511.05952 (2015)"},{"key":"1341_CR29","doi-asserted-by":"crossref","unstructured":"Williams, G., Drews, P., Goldfain, B., Rehg, J.M., Theodorou, E.A.: Aggressive driving with model predictive path integral control. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On, pp. 1433\u20131440 (2016)","DOI":"10.1109\/ICRA.2016.7487277"},{"key":"1341_CR30","doi-asserted-by":"crossref","unstructured":"Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic mpc for model-based reinforcement learning (2017)","DOI":"10.1109\/ICRA.2017.7989202"},{"key":"1341_CR31","doi-asserted-by":"crossref","unstructured":"Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic Mpc for model-based reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714\u20131721 (2017)","DOI":"10.1109\/ICRA.2017.7989202"},{"issue":"3","key":"1341_CR32","first-page":"1","volume":"13","author":"S Yaghoubi","year":"2013","unstructured":"Yaghoubi, S., Akbarzadeh, N.A., Bazargani, S.S., Bazargani, S.S., Bamizan, M., Asl, M.I.: Autonomous robots for agricultural tasks and farm assignment and future trends in agro robots. Int. J. Mech. Mechatronics Eng. 13(3), 1\u20136 (2013)","journal-title":"Int. J. Mech. Mechatronics Eng."},{"key":"1341_CR33","doi-asserted-by":"crossref","unstructured":"Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. ArXiv e-prints (2015)","DOI":"10.1109\/ICRA.2016.7487175"},{"key":"1341_CR34","doi-asserted-by":"crossref","unstructured":"Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for autonomous aerial vehicles with Mpc-guided policy search. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 528\u2013535 (2016)","DOI":"10.1109\/ICRA.2016.7487175"}],"container-title":["Journal of Intelligent & Robotic Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10846-021-01341-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10846-021-01341-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10846-021-01341-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T03:48:36Z","timestamp":1724730516000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10846-021-01341-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,30]]},"references-count":34,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,4]]}},"alternative-id":["1341"],"URL":"https:\/\/doi.org\/10.1007\/s10846-021-01341-1","relation":{},"ISSN":["0921-0296","1573-0409"],"issn-type":[{"type":"print","value":"0921-0296"},{"type":"electronic","value":"1573-0409"}],"subject":[],"published":{"date-parts":[[2021,3,30]]},"assertion":[{"value":"1 July 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 February 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 March 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"78"}}