{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:39:58Z","timestamp":1726850398172},"reference-count":62,"publisher":"Springer Science and Business Media LLC","issue":"3-4","license":[{"start":{"date-parts":[[2020,9,26]],"date-time":"2020-09-26T00:00:00Z","timestamp":1601078400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2020,9,26]],"date-time":"2020-09-26T00:00:00Z","timestamp":1601078400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"INTERREG V-A Deutschland-Nederland, SPECTORS project","award":["143081"]},{"name":"Horizon 2020 Framework Programme, AERIAL-CORE project","award":["871479"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Intell Robot Syst"],"published-print":{"date-parts":[[2020,12]]},"abstract":"Abstract<\/jats:title>In this paper, we propose, discuss, and validate an online Nonlinear Model Predictive Control (NMPC) method for multi-rotor aerial systems with arbitrarily positioned and oriented rotors which simultaneously addresses the local reference trajectory planning and tracking problems. This work brings into question some common modeling and control design choices that are typically adopted to guarantee robustness and reliability but which may severely limit the attainable performance. Unlike most of state of the art works, the proposed method takes advantages of a unified nonlinear model which aims to describe the whole robot dynamics by explicitly including a realistic physical description of the actuator dynamics and limitations. As a matter of fact, our solution does not resort to common simplifications such as: (1) linear model approximation, (2) cascaded control paradigm used to decouple the translational and the rotational dynamics of the rigid body, (3) use of low-level reactive trackers for the stabilization of the internal loop, and (4) unconstrained optimization resolution or use of fictitious constraints. More in detail, we consider as control inputs the derivatives of the propeller forces and propose a novel method to suitably identify the actuator limitations by leveraging experimental data. Differently from previous approaches, the constraints of the optimization problem are defined only by the real physics of the actuators, avoiding conservative \u2013 and often not physical \u2013 input\/state saturations which are present, e.g., in cascaded approaches. The control algorithm is implemented using a state-of-the-art Real Time Iteration (RTI) scheme with partial sensitivity update method. The performances of the control system are finally validated by means of real-time simulations and in real experiments, with a large spectrum of heterogeneous multi-rotor systems: an under-actuated<\/jats:italic> quadrotor, a fully-actuated<\/jats:italic> hexarotor, a multi-rotor with orientable<\/jats:italic> propellers, and a multi-rotor with an unexpected rotor failure<\/jats:italic>. To the best of our knowledge, this is the first time that a predictive controller framework with all the valuable aforementioned features is presented and extensively validated in real-time experiments and simulations.<\/jats:p>","DOI":"10.1007\/s10846-020-01250-9","type":"journal-article","created":{"date-parts":[[2020,9,26]],"date-time":"2020-09-26T09:02:47Z","timestamp":1601110967000},"page":"1213-1247","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":47,"title":["Nonlinear Model Predictive Control with Enhanced Actuator Model for Multi-Rotor Aerial Vehicles with Generic Designs"],"prefix":"10.1007","volume":"100","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3423-0969","authenticated-orcid":false,"given":"Davide","family":"Bicego","sequence":"first","affiliation":[]},{"given":"Jacopo","family":"Mazzetto","sequence":"additional","affiliation":[]},{"given":"Ruggero","family":"Carli","sequence":"additional","affiliation":[]},{"given":"Marcello","family":"Farina","sequence":"additional","affiliation":[]},{"given":"Antonio","family":"Franchi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,26]]},"reference":[{"issue":"1-4","key":"1250_CR1","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1007\/s10846-011-9560-x","volume":"65","author":"L Merino","year":"2012","unstructured":"Merino, L., Caballero, F., Mart\u00ednez-De-Dios, J.R., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. Journal of Intelligent & Robotic Systems 65(1-4), 533\u2013548 (2012)","journal-title":"Journal of Intelligent & Robotic Systems"},{"issue":"9","key":"1250_CR2","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1177\/0278364919856694","volume":"38","author":"M Ryll","year":"2019","unstructured":"Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Bicego, D., Franchi, A.: 6D interaction control with aerial robots: The flying end-effector paradigm. The International Journal of Robotics Research 38(9), 1045\u20131062 (2019)","journal-title":"The International Journal of Robotics Research"},{"key":"1250_CR3","doi-asserted-by":"crossref","unstructured":"Staub, N., Bicego, D., Sabl\u00e9, Q., Arellano-Quintana, V., Mishra, S., Franchi, A.: Towards a flying assistant paradigm: the OTHex. In: IEEE Int. Conf. on Robotics and Automation, Brisbane, Australia, May 2018, pp. 6997\u20137002. (2018 )","DOI":"10.1109\/ICRA.2018.8460877"},{"key":"1250_CR4","doi-asserted-by":"crossref","unstructured":"Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust explicit model predictive flight control of unmanned rotorcrafts: Design and experimental evaluation. In: Control Conference (ECC), 2014 European IEEE, 498\u2013503 (2014)","DOI":"10.1109\/ECC.2014.6862269"},{"issue":"3-4","key":"1250_CR5","doi-asserted-by":"publisher","first-page":"443","DOI":"10.1007\/s10846-015-0238-7","volume":"81","author":"K Alexis","year":"2016","unstructured":"Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust model predictive flight control of unmanned rotorcrafts. Journal of Intelligent & Robotic Systems 81(3-4), 443\u2013469 (2016)","journal-title":"Journal of Intelligent & Robotic Systems"},{"key":"1250_CR6","doi-asserted-by":"crossref","unstructured":"Baca, T., Loianno, G., Saska, M: Embedded model predictive control of unmanned micro aerial vehicles. In: Methods and Models in Automation and Robotics (MMAR), 2016 21st International Conference on IEEE, 992\u2013997 (2016)","DOI":"10.1109\/MMAR.2016.7575273"},{"key":"1250_CR7","doi-asserted-by":"crossref","unstructured":"Bangura, M., Mahony, R.: Real-time model predictive control for quadrotors. In: IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11773\u201311780, 19th IFAC World Congress. (2014)","DOI":"10.3182\/20140824-6-ZA-1003.00203"},{"key":"1250_CR8","doi-asserted-by":"crossref","unstructured":"Bouffard, P., Aswani, A., Tomlin, C.: Learning-based model predictive control on a quadrotor: Onboard implementation and experimental results. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, pp 279\u2013284 (2012)","DOI":"10.1109\/ICRA.2012.6225035"},{"key":"1250_CR9","doi-asserted-by":"crossref","unstructured":"Darivianakis, G., Alexis, K., Burri, M., Siegwart, R.: Hybrid predictive control for aerial robotic physical interaction towards inspection operations. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, IEEE 53\u201358 (2014)","DOI":"10.1109\/ICRA.2014.6906589"},{"key":"1250_CR10","doi-asserted-by":"crossref","unstructured":"Foehn, P., Scaramuzza, D.: Onboard state dependent lqr for agile quadrotors. In: Robotics and Automation (ICRA),2018, IEEE International Conference on IEEE (2018)","DOI":"10.1109\/ICRA.2018.8460885"},{"key":"1250_CR11","doi-asserted-by":"crossref","unstructured":"Geisert, M., Mansard, N.: Trajectory generation for quadrotor based systems using numerical optimal control. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on IEEE, 2958\u20132964 (2016)","DOI":"10.1109\/ICRA.2016.7487460"},{"key":"1250_CR12","doi-asserted-by":"crossref","unstructured":"Hofer, M., Muehlebach, M., D\u2019Andrea, R. : Application of an approximate model predictive control scheme on an unmanned aerial vehicle. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, IEEE, 2952\u20132957 (2016)","DOI":"10.1109\/ICRA.2016.7487459"},{"key":"1250_CR13","doi-asserted-by":"crossref","unstructured":"Kamel, M., Alexis, K., Achtelik, M., Siegwart, R.: Fast nonlinear model predictive control for multicopter attitude tracking on so (3). In: Control Applications (CCA), 2015 IEEE Conference on, IEEE 1160\u20131166 (2015)","DOI":"10.1109\/CCA.2015.7320769"},{"issue":"1","key":"1250_CR14","doi-asserted-by":"publisher","first-page":"3463","DOI":"10.1016\/j.ifacol.2017.08.849","volume":"50","author":"M Kamel","year":"2017","unstructured":"Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehicles. IFAC-PapersOnLine 50(1), 3463\u20133469 (2017)","journal-title":"IFAC-PapersOnLine"},{"issue":"1","key":"1250_CR15","doi-asserted-by":"publisher","first-page":"4076","DOI":"10.1016\/j.ifacol.2017.08.791","volume":"50","author":"JA Ligthart","year":"2017","unstructured":"Ligthart, J.A., Poksawat, P., Wang, L., Nijmeijer, H.: Experimentally validated model predictive controller for a hexacopter. IFAC-PapersOnLine 50(1), 4076\u20134081 (2017)","journal-title":"IFAC-PapersOnLine"},{"key":"1250_CR16","doi-asserted-by":"crossref","unstructured":"Lin, P., Chen, S., Liu, C.: Model predictive control-based trajectory planning for quadrotors with state and input constraints. In: Control Automation and Systems (ICCAS), 2016 16th International Conference on IEEE 1618\u20131623 (2016)","DOI":"10.1109\/ICCAS.2016.7832517"},{"key":"1250_CR17","doi-asserted-by":"crossref","unstructured":"Liu, C., Chen, W.-H., Andrews, J.: Explicit non-linear model predictive control for autonomous helicopters. In: Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 226, 9, 1171\u20131182 (2012)","DOI":"10.1177\/0954410011418585"},{"key":"1250_CR18","doi-asserted-by":"crossref","unstructured":"Liu, Y., Montenbruck, J. M., Stegagno, P., Allg\u00f6wer, F. , Zell, A.: A robust nonlinear controller for nontrivial quadrotor maneuvers: Approach and verification. In: Intelligent Robots and Systems (IROS), 2015 IEEE\/RSJ International Conference on IEEE\/RSJ, 5410\u20135416 (2015)","DOI":"10.1109\/IROS.2015.7354142"},{"key":"1250_CR19","doi-asserted-by":"crossref","unstructured":"Mueller, M.W., D\u2019Andrea, R.: A model predictive controller for quadrocopter state interception. In: Control Conference (ECC), 2013 European IEEE 1383\u20131389 (2013)","DOI":"10.23919\/ECC.2013.6669415"},{"issue":"6","key":"1250_CR20","doi-asserted-by":"publisher","first-page":"1294","DOI":"10.1109\/TRO.2015.2479878","volume":"31","author":"MW Mueller","year":"2015","unstructured":"Mueller, M.W., Hehn, M., D\u2019Andrea, R.: A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans. Robot. 31(6), 1294\u20131310 (2015)","journal-title":"IEEE Trans. Robot."},{"key":"1250_CR21","doi-asserted-by":"crossref","unstructured":"Neunert, M., De Crousaz, C., Furrer, F., Kamel, M., Farshidian, F., Siegwart, R., Buchli, J.: Fast nonlinear model predictive control for unified trajectory optimization and tracking. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on IEEE, pp 1398\u20131404 (2016)","DOI":"10.1109\/ICRA.2016.7487274"},{"key":"1250_CR22","doi-asserted-by":"crossref","unstructured":"Papachristos, C., Alexis, K., Tzes, A.: model predictive hovering-translation control of an unmanned tri-tiltrotor. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on IEEE, pp 5425\u20135432 (2013)","DOI":"10.1109\/ICRA.2013.6631355"},{"issue":"3-4","key":"1250_CR23","doi-asserted-by":"publisher","first-page":"471","DOI":"10.1007\/s10846-015-0231-1","volume":"81","author":"C Papachristos","year":"2016","unstructured":"Papachristos, C., Alexis, K., Tzes, A.: Dual\u2013authority thrust\u2013vectoring of a tri\u2013tiltrotor employing model predictive control. Journal of intelligent & robotic systems 81(3-4), 471\u2013504 (2016)","journal-title":"Journal of intelligent & robotic systems"},{"issue":"3","key":"1250_CR24","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/MRA.2010.937855","volume":"17","author":"N Michael","year":"2010","unstructured":"Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav testbed. IEEE Robot. Automat. Mag. 17(3), 56\u201365 (2010)","journal-title":"IEEE Robot. Automat. Mag."},{"key":"1250_CR25","doi-asserted-by":"crossref","unstructured":"Lee, T., Leoky, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE(3). In: 49th IEEE Conf. on Decision and Control, Atlanta, GA, pp 5420\u20135425 (2010)","DOI":"10.1109\/CDC.2010.5717652"},{"key":"1250_CR26","doi-asserted-by":"crossref","unstructured":"Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE Int. Conf. on Robotics and Automation, Shanghai, China, pp 2520\u20132525 (2011)","DOI":"10.1109\/ICRA.2011.5980409"},{"key":"1250_CR27","doi-asserted-by":"crossref","unstructured":"Goodarzi, F., Lee, D., Lee, T.: Geometric nonlinear pid control of a quadrotor uav on se (3). In: Control Conference (ECC), 2013 European IEEE, pp 3845\u20133850 (2013)","DOI":"10.23919\/ECC.2013.6669644"},{"key":"1250_CR28","doi-asserted-by":"crossref","unstructured":"Dai, S., Lee, T., Bernstein, D.S.: Adaptive control of a quadrotor uav transporting a cable-suspended load with unknown mass. In: Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pp 6149\u20136154 (2014)","DOI":"10.1109\/CDC.2014.7040352"},{"key":"1250_CR29","unstructured":"Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: IEEE Int. Conf. on Robotics and Automation, May 2005, pp. 2247\u20132252 (2005 )"},{"issue":"1","key":"1250_CR30","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1109\/MCS.2012.2225931","volume":"33","author":"M-D Hua","year":"2013","unstructured":"Hua, M.-D., Hamel, T., Morin, P., Samson, C.: Introduction to feedback control of underactuated VTOL vehicles: A review of basic control design ideas and principles. IEEE Control Systems Magazine 33(1), 61\u201375 (2013)","journal-title":"IEEE Control Systems Magazine"},{"issue":"2","key":"1250_CR31","doi-asserted-by":"publisher","first-page":"534","DOI":"10.1109\/TRO.2017.2786734","volume":"34","author":"A Franchi","year":"2018","unstructured":"Franchi, A., Carli, R., Bicego, D., Ryll, M.: Full-pose tracking control for aerial robotic systems with laterally-bounded input force. IEEE Trans. on Robotics 34(2), 534\u2013541 (2018)","journal-title":"IEEE Trans. on Robotics"},{"issue":"4","key":"1250_CR32","doi-asserted-by":"publisher","first-page":"837","DOI":"10.1109\/TRO.2018.2857475","volume":"34","author":"S-J Chung","year":"2018","unstructured":"Chung, S.-J., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Robot. 34(4), 837\u2013855 (2018)","journal-title":"IEEE Trans. Robot."},{"issue":"2","key":"1250_CR33","doi-asserted-by":"publisher","first-page":"540","DOI":"10.1109\/TCST.2014.2330999","volume":"23","author":"M Ryll","year":"2015","unstructured":"Ryll, M., B\u00fclthoff, H.H., Robuffo-Giordano, P.: A novel overactuated quadrotor unmanned aerial vehicle: modeling, control, and experimental validation. IEEE Trans. on Control Systems Technology 23(2), 540\u2013556 (2015)","journal-title":"IEEE Trans. on Control Systems Technology"},{"issue":"4","key":"1250_CR34","doi-asserted-by":"publisher","first-page":"1269","DOI":"10.1109\/TMECH.2013.2264105","volume":"18","author":"W Khan","year":"2013","unstructured":"Khan, W., Nahon, M.: Toward an accurate physics-based uav thruster model. IEEE\/ASME Transactions on Mechatronics 18(4), 1269\u20131279 (2013)","journal-title":"IEEE\/ASME Transactions on Mechatronics"},{"issue":"1","key":"1250_CR35","doi-asserted-by":"publisher","first-page":"68 155","DOI":"10.1109\/ACCESS.2018.2879636","volume":"6","author":"V Arellano-Quintana","year":"2018","unstructured":"Arellano-Quintana, V., Merchan-Cruz, E., Franchi, A.: A novel experimental model and a drag-optimal allocation method for variable-pitch propellers in multirotors. IEEE Access 6(1), 68 155\u201368 168 (2018)","journal-title":"IEEE Access"},{"key":"1250_CR36","doi-asserted-by":"crossref","unstructured":"Morbidi, F., Bicego, D., Ryll, M., Franchi, A.: Energy-efficient trajectory generation for a hexarotor with dual-tilting propellers. In: IEEE\/RSJ Int. Conf. on Intelligent Robots and Systems Madrid, Spain, Oct. 2018 (2018)","DOI":"10.1109\/IROS.2018.8594419"},{"key":"1250_CR37","doi-asserted-by":"crossref","unstructured":"Brescianini, D., D? Andrea, R.: Design, modeling and control of an omni-directional aerial vehicle. In: IEEE Int. Conf. on Robotics and Automation, Stockholm, Sweden, May 2016, pp. 3261\u20133266. (2016 )","DOI":"10.1109\/ICRA.2016.7487497"},{"key":"1250_CR38","doi-asserted-by":"crossref","unstructured":"Park, S., Her, J.J., Kim, J., Lee, D.: Design, modeling and control of omni-directional aerial robot. In: IEEE\/RSJ Int. Conf. on Intelligent Robots and Systems, Daejeon, South Korea, 2016, 1570\u20131575 (2016)","DOI":"10.1109\/IROS.2016.7759254"},{"issue":"3","key":"1250_CR39","doi-asserted-by":"publisher","first-page":"2277","DOI":"10.1109\/LRA.2018.2802544","volume":"3","author":"M Tognon","year":"2018","unstructured":"Tognon, M., Franchi, A.: Omnidirectional aerial vehicles with unidirectional thrusters: Theory, optimal design, and control. IEEE Robotics and Automation Letters 3(3), 2277\u20132282 (2018)","journal-title":"IEEE Robotics and Automation Letters"},{"key":"1250_CR40","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1109\/MRA.2012.2206474","volume":"32","author":"R Mahony","year":"2012","unstructured":"Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles. IEEE Robotics and Automation magazine, vol. 32, 20 (2012)","journal-title":"IEEE Robotics and Automation magazine, vol."},{"issue":"17","key":"1250_CR41","doi-asserted-by":"publisher","first-page":"14","DOI":"10.3182\/20090916-3-ES-3003.00004","volume":"42","author":"A Bemporad","year":"2009","unstructured":"Bemporad, A., Pascucci, C.A., Rocchi, C.: Hierarchical and hybrid model predictive control of quadcopter air vehicles. IFAC Proceedings Volumes 42(17), 14\u201319 (2009)","journal-title":"IFAC Proceedings Volumes"},{"key":"1250_CR42","doi-asserted-by":"crossref","unstructured":"Franchi, A., Mallet, A.: Adaptive closed-loop speed control of BLDC motors with applications to multi-rotor aerial vehicles. In: 2017 IEEE Int. Conf. on Robotics and Automation, Singapore, pp 5203\u20135208 (2017)","DOI":"10.1109\/ICRA.2017.7989610"},{"issue":"6","key":"1250_CR43","doi-asserted-by":"publisher","first-page":"789","DOI":"10.1016\/S0005-1098(99)00214-9","volume":"36","author":"D Mayne","year":"2000","unstructured":"Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789\u2013814 (2000)","journal-title":"Automatica"},{"key":"1250_CR44","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1016\/j.automatica.2017.10.002","volume":"87","author":"M Alamir","year":"2018","unstructured":"Alamir, M.: Stability proof for nonlinear mpc design using monotonically increasing weighting profiles without terminal constraints. Automatica 87, 455\u2013459 (2018)","journal-title":"Automatica"},{"key":"1250_CR45","doi-asserted-by":"crossref","unstructured":"Alessandretti, A., Aguiar, A.P., Jones, C.N.: Trajectory-tracking and path-following controllers for constrained underactuated vehicles using model predictive control. In: 2013 European Control Conference (ECC), pp 1371\u20131376 (2013)","DOI":"10.23919\/ECC.2013.6669717"},{"issue":"8","key":"1250_CR46","doi-asserted-by":"publisher","first-page":"4938","DOI":"10.1137\/090758696","volume":"48","author":"L Gr\u00fcne","year":"2010","unstructured":"Gr\u00fcne, L., Pannek, J., Seehafer, M., Worthmann, K.: Analysis of unconstrained nonlinear mpc schemes with time varying control horizon\u201d. SIAM Journal on Control and Optimization, 48(8), 4938\u20134962 (2010)","journal-title":"SIAM Journal on Control and Optimization,"},{"issue":"9","key":"1250_CR47","doi-asserted-by":"publisher","first-page":"1353","DOI":"10.1016\/0005-1098(95)00042-U","volume":"31","author":"M Alamir","year":"1995","unstructured":"Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica 31(9), 1353\u20131356 (1995)","journal-title":"Automatica"},{"issue":"1","key":"1250_CR48","doi-asserted-by":"publisher","first-page":"9852","DOI":"10.1016\/j.ifacol.2017.08.907","volume":"50","author":"MW Mehrez","year":"2017","unstructured":"Mehrez, M.W., Worthmann, K., Mann, G.K., Gosine, R.G., Faulwasser, T.: Predictive path following of mobile robots without terminal stabilizing constraints. IFAC-PapersOnLine 50(1), 9852\u20139857 (2017)","journal-title":"IFAC-PapersOnLine"},{"issue":"2","key":"1250_CR49","doi-asserted-by":"publisher","first-page":"620","DOI":"10.1109\/LRA.2017.2776353","volume":"3","author":"M Faessler","year":"2018","unstructured":"Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robotics and Automation Letters 3(2), 620\u2013626 (2018)","journal-title":"IEEE Robotics and Automation Letters"},{"key":"1250_CR50","doi-asserted-by":"crossref","unstructured":"Michieletto, G., Ryll, M., Franchi, A.: Control of statically hoverable multi-rotor aerial vehicles and application to rotorfailure robustness for hexarotors. In: 2017 IEEE Int. Conf. on Robotics and Automation, Singapore, pp 2747\u20132752 (2017)","DOI":"10.1109\/ICRA.2017.7989320"},{"issue":"3","key":"1250_CR51","doi-asserted-by":"publisher","first-page":"702","DOI":"10.1109\/TRO.2018.2821155","volume":"34","author":"G Michieletto","year":"2018","unstructured":"Michieletto, G., Ryll, M., Franchi, A.: Fundamental actuation properties of multi-rotors: Forcemoment decoupling and fail-safe robustness. IEEE Trans. on Robotics 34(3), 702\u2013715 (2018)","journal-title":"IEEE Trans. on Robotics"},{"key":"1250_CR52","doi-asserted-by":"crossref","unstructured":"Knudsen, B.R., Alessandretti, A., Jones, C.N.: Sensor fault tolerance in output feedback nonlinear model predictive control. In: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol) Ieee, pp 711\u2013716 (2016)","DOI":"10.1109\/SYSTOL.2016.7739832"},{"issue":"4","key":"1250_CR53","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1016\/S0959-1524(01)00023-3","volume":"12","author":"M Diehl","year":"2002","unstructured":"Diehl, M., Bock, H.G., Schl\u00f6der, J.P., Findeisen, R., Nagy, Z., Allg\u00f6wer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process. Control. 12(4), 577\u2013585 (2002)","journal-title":"J. Process. Control."},{"key":"1250_CR54","doi-asserted-by":"crossref","unstructured":"Bock, H.G., Plitt, K.-J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the IFAC World Congress (1984)","DOI":"10.1016\/S1474-6670(17)61205-9"},{"key":"1250_CR55","unstructured":"Chen, Y., Cuccato, D., Bruschetta, M., Beghi, A.: A fast nonlinear model predictive control strategy for real-time motion control of mechanical systems. In: Advanced Intelligent Mechatronics (AIM), 2017 IEEE International Conference on IEEE, pp 1780\u20131785 (2017)"},{"key":"1250_CR56","unstructured":"Andersson, J.: A general-purpose software framework for dynamic optimization. In: Ph.D. dissertation, PhD thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT\/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee Belgium (2013)"},{"issue":"4","key":"1250_CR57","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1007\/s12532-014-0071-1","volume":"6","author":"H Ferreau","year":"2014","unstructured":"Ferreau, H., Kirches, C., Potschka, A., Bock, H., Diehl, M.: Qp OASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327\u2013363 (2014)","journal-title":"Math. Program. Comput."},{"key":"1250_CR58","doi-asserted-by":"crossref","unstructured":"Chen, Y., Bruschetta, M., Picotti, E., Beghi, A.: Matmpc-a matlab based toolbox for real-time nonlinear model predictive control. In: 2019 18th European Control Conference (ECC) IEEE, pp 3365\u20133370 (2019)","DOI":"10.23919\/ECC.2019.8795788"},{"key":"1250_CR59","doi-asserted-by":"crossref","unstructured":"Falanga, D, Foehn, P., Lu, P., Scaramuzza, D.: Pampc: Perception-aware model predictive control for quadrotors. In: Intelligent Robots and Systems IROS 2018 IEE RSJ International Conference on IEEE RSJ (2018)","DOI":"10.1109\/IROS.2018.8593739"},{"key":"1250_CR60","doi-asserted-by":"crossref","unstructured":"Ryll, M., Bicego, D., Franchi, A.: Modeling and control of FAST-Hex: a fully-actuated by synchronized-tilting hexarotor. In: 2016 IEEE\/RSJ Int. Conf. on Intelligent Robots and Systems, Daejeon, South Korea, pp 1689\u20131694 (2016)","DOI":"10.1109\/IROS.2016.7759271"},{"key":"1250_CR61","doi-asserted-by":"crossref","unstructured":"Achtelik, M., Doth, K.-M., Gurdan, D., Stumpf, J.: Design of a multi rotor mav with regard to efficiency, dynamics and redundancy. In: AIAA Guidance Navigation, and Control Conference, p 4779 (2012)","DOI":"10.2514\/6.2012-4779"},{"issue":"4","key":"1250_CR62","doi-asserted-by":"publisher","first-page":"1555","DOI":"10.1109\/TAES.2016.140885","volume":"52","author":"JI Giribet","year":"2016","unstructured":"Giribet, J. I., Sanchez-Pena, R. S., Ghersin, A. S.: Analysis and design of a tilted rotor hexacopter for fault tolerance. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1555\u20131567 (2016)","journal-title":"IEEE Trans. Aerosp. Electron. Syst."}],"container-title":["Journal of Intelligent & Robotic Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10846-020-01250-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10846-020-01250-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10846-020-01250-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,25]],"date-time":"2021-09-25T23:08:50Z","timestamp":1632611330000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10846-020-01250-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,26]]},"references-count":62,"journal-issue":{"issue":"3-4","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["1250"],"URL":"https:\/\/doi.org\/10.1007\/s10846-020-01250-9","relation":{},"ISSN":["0921-0296","1573-0409"],"issn-type":[{"value":"0921-0296","type":"print"},{"value":"1573-0409","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,9,26]]},"assertion":[{"value":"18 November 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 August 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 September 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}