{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,4]],"date-time":"2024-08-04T20:36:02Z","timestamp":1722803762332},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2019,4,6]],"date-time":"2019-04-06T00:00:00Z","timestamp":1554508800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,4,6]],"date-time":"2019-04-06T00:00:00Z","timestamp":1554508800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["ACI-1547580","CHE 1305874"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["R01 GM099842","R01 DK097376"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Comput Aided Mol Des"],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1007\/s10822-019-00199-8","type":"journal-article","created":{"date-parts":[[2019,4,7]],"date-time":"2019-04-07T01:34:27Z","timestamp":1554600867000},"page":"477-486","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["BCL::Mol2D\u2014a robust atom environment descriptor for QSAR modeling and lead optimization"],"prefix":"10.1007","volume":"33","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4704-7538","authenticated-orcid":false,"given":"Oanh","family":"Vu","sequence":"first","affiliation":[]},{"given":"Jeffrey","family":"Mendenhall","sequence":"additional","affiliation":[]},{"given":"Doaa","family":"Altarawy","sequence":"additional","affiliation":[]},{"given":"Jens","family":"Meiler","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,4,6]]},"reference":[{"issue":"3","key":"199_CR1","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1517\/17460441003592072","volume":"5","author":"KH Kim","year":"2010","unstructured":"Kim KH, Kim ND, Seong BL (2010) Pharmacophore-based virtual screening: a review of recent applications. Expert Opin Drug Discov 5(3):205\u2013222","journal-title":"Expert Opin Drug Discov"},{"issue":"11","key":"199_CR2","doi-asserted-by":"publisher","first-page":"2551","DOI":"10.1021\/ci9002206","volume":"49","author":"L Carlsson","year":"2009","unstructured":"Carlsson L, Helgee EA, Boyer S (2009) Interpretation of nonlinear QSAR models applied to ames mutagenicity data. J Chem Inf Model 49(11):2551\u20132558","journal-title":"J Chem Inf Model"},{"issue":"1","key":"199_CR3","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1007\/s10822-011-9495-0","volume":"26","author":"RD Cramer","year":"2012","unstructured":"Cramer RD (2012) The inevitable QSAR renaissance. J Comput Aided Mol Des 26(1):35\u201338","journal-title":"J Comput Aided Mol Des"},{"issue":"1","key":"199_CR4","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1124\/pr.112.007336","volume":"66","author":"G Sliwoski","year":"2014","unstructured":"Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334\u2013395","journal-title":"Pharmacol Rev"},{"issue":"5","key":"199_CR5","doi-asserted-by":"publisher","first-page":"1708","DOI":"10.1021\/ci0498719","volume":"44","author":"A Bender","year":"2004","unstructured":"Bender A, Mussa HY, Glen RC, Reiling S (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44(5):1708\u20131718","journal-title":"J Chem Inf Comput Sci"},{"issue":"5","key":"199_CR6","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1021\/ci100062n","volume":"50","author":"M Sastry","year":"2010","unstructured":"Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50(5):771\u2013784","journal-title":"J Chem Inf Model"},{"issue":"22","key":"199_CR7","doi-asserted-by":"publisher","first-page":"3219","DOI":"10.1016\/0040-4020(80)80168-2","volume":"36","author":"J Gasteiger","year":"1980","unstructured":"Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity\u2014a rapid access to atomic charges. Tetrahedron 36(22):3219\u20133228","journal-title":"Tetrahedron"},{"key":"199_CR8","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1007\/978-1-4939-2239-0_19","volume-title":"Artificial neural networks","author":"N Monta\u00f1ez-God\u00ednez","year":"2015","unstructured":"Monta\u00f1ez-God\u00ednez N, Mart\u00ednez-Olgu\u00edn AC, Deeb O, Gardu\u00f1o-Ju\u00e1rez R, Ram\u00edrez-Galicia G (2015) QSAR\/QSPR as an application of artificial neural networks. In: Cartwright H (ed) Artificial neural networks. Springer, New York, pp\u00a0319\u2013333"},{"issue":"2","key":"199_CR9","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1007\/s10822-016-9895-2","volume":"30","author":"J Mendenhall","year":"2016","unstructured":"Mendenhall J, Meiler J (2016) Improving quantitative structure\u2013activity relationship models using Artificial Neural Networks trained with dropout. J Comput Aided Mol Des 30(2):177\u2013189","journal-title":"J Comput Aided Mol Des"},{"issue":"12","key":"199_CR10","doi-asserted-by":"publisher","first-page":"4977","DOI":"10.1021\/jm4004285","volume":"57","author":"A Cherkasov","year":"2014","unstructured":"Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977\u20135010","journal-title":"J Med Chem"},{"issue":"16","key":"199_CR11","doi-asserted-by":"publisher","first-page":"2520","DOI":"10.1021\/jm00042a005","volume":"37","author":"IV Tetko","year":"1994","unstructured":"Tetko IV, Tanchuk VY, Chentsova NP, Antonenko SV, Poda GI, Kukhar VP et al (1994) HIV-1 reverse transcriptase inhibitor design using artificial neural networks. J Med Chem 37(16):2520\u20132526","journal-title":"J Med Chem"},{"issue":"4","key":"199_CR12","doi-asserted-by":"publisher","first-page":"794","DOI":"10.1021\/ci950204c","volume":"36","author":"IV Tetko","year":"1996","unstructured":"Tetko IV, Villa AE, Livingstone DJ (1996) Neural network studies. 2. Variable selection. J Chem Inform Comput Sci 36(4):794\u2013803","journal-title":"J Chem Inform Comput Sci"},{"issue":"4","key":"199_CR13","doi-asserted-by":"publisher","first-page":"1109","DOI":"10.1021\/ci050110v","volume":"45","author":"R Guha","year":"2005","unstructured":"Guha R, Stanton DT, Jurs PC (2005) Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. J Chem Inform Model 45(4):1109\u20131121","journal-title":"J Chem Inform Model"},{"issue":"3","key":"199_CR14","doi-asserted-by":"publisher","first-page":"800","DOI":"10.1021\/ci050022a","volume":"45","author":"R Guha","year":"2005","unstructured":"Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inform Model 45(3):800\u2013806","journal-title":"J Chem Inform Model"},{"issue":"9","key":"199_CR15","doi-asserted-by":"publisher","first-page":"639","DOI":"10.1002\/minf.201100136","volume":"31","author":"G Marcou","year":"2012","unstructured":"Marcou G, Horvath D, Solov\u2019ev V, Arrault A, Vayer P, Varnek A (2012) Interpretability of SAR\/QSAR models of any complexity by atomic contributions. Mol Inform 31(9):639\u2013642","journal-title":"Mol Inform"},{"issue":"1","key":"199_CR16","first-page":"1929","volume":"15","author":"GH Nitish Srivastava","year":"2014","unstructured":"Nitish Srivastava GH, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929\u20131958","journal-title":"J Mach Learn Res"},{"key":"199_CR17","doi-asserted-by":"crossref","unstructured":"Butkiewicz M, Lowe EW, Meiler J, Bcl\u2237ChemInfo\u2014Qualitative analysis of machine learning models for activation of HSD involved in Alzheimer\u2019s Disease. 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB); 9\u201312 May 2012","DOI":"10.1109\/CIBCB.2012.6217248"},{"issue":"1","key":"199_CR18","doi-asserted-by":"publisher","first-page":"735","DOI":"10.3390\/molecules18010735","volume":"18","author":"M Butkiewicz","year":"2013","unstructured":"Butkiewicz M, Lowe EW Jr, Mueller R, Mendenhall JL, Teixeira PL, Weaver CD et al (2013) Benchmarking ligand-based virtual high-throughput screening with the PubChem database. Molecules 18(1):735\u2013756","journal-title":"Molecules"},{"issue":"3434","key":"199_CR19","doi-asserted-by":"publisher","first-page":"1115","DOI":"10.1126\/science.132.3434.1115","volume":"132","author":"DJ Rogers","year":"1960","unstructured":"Rogers DJ, Tanimoto TT (1960) A computer program for classifying plants. Science 132(3434):1115\u20131118","journal-title":"Science"},{"issue":"1","key":"199_CR20","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1080\/10629360290002073","volume":"13","author":"II Baskin","year":"2002","unstructured":"Baskin II, Ait AO, Halberstam NM, Palyulin VA, Zefirov NS (2002) An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res 13(1):35\u201341","journal-title":"SAR QSAR Environ Res"},{"issue":"9","key":"199_CR21","doi-asserted-by":"publisher","first-page":"1868","DOI":"10.1021\/ja0109388","volume":"124","author":"J Meiler","year":"2002","unstructured":"Meiler J, Will M. Genius (2002) A genetic algorithm for automated structure elucidation from 13C NMR Spectra. J Am Chem Soc 124(9):1868\u20131870","journal-title":"J Am Chem Soc"},{"issue":"2","key":"199_CR22","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1021\/ci970095x","volume":"38","author":"W Zheng","year":"1998","unstructured":"Zheng W, Cho SJ, Tropsha A (1998) Rational combinatorial library design. 1. Focus-2D: a new approach to the design of targeted combinatorial chemical libraries. J Chem Inform Comput Sci 38(2):251\u2013258","journal-title":"J Chem Inform Comput Sci"},{"issue":"3","key":"199_CR23","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1007\/s10822-015-9893-9","volume":"30","author":"G Sliwoski","year":"2016","unstructured":"Sliwoski G, Mendenhall J, Meiler J (2016) Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign. J Comput Aided Mol Des 30(3):209\u2013217","journal-title":"J Comput Aided Mol Des"},{"issue":"1","key":"199_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.21767\/2470-6973.100022","volume":"3","author":"M Butkiewicz","year":"2017","unstructured":"Butkiewicz M, Bryant SH, Lowe EW Jr., David C, Meiler J (2017) High-throughput screening assay datasets from the PubChem database. Chem Inform 3(1):1","journal-title":"Chem Inform"},{"issue":"4","key":"199_CR25","doi-asserted-by":"publisher","first-page":"232","DOI":"10.1002\/poc.597","volume":"16","author":"J Gasteiger","year":"2003","unstructured":"Gasteiger J, Teckentrup A, Terfloth L, Spycher S (2003) Neural networks as data mining tools in drug design. J Phys Org Chem 16(4):232\u2013245","journal-title":"J Phys Org Chem"},{"issue":"1","key":"199_CR26","first-page":"66","volume":"19","author":"GM Pierre Broto","year":"1984","unstructured":"Pierre Broto GM, Vandycke C (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. Autocorrelation descriptor. Eur J Med Chem 19(1):66\u201370","journal-title":"Eur J Med Chem"},{"issue":"9","key":"199_CR27","doi-asserted-by":"publisher","first-page":"1561","DOI":"10.1021\/ci100214a","volume":"50","author":"MM Mysinger","year":"2010","unstructured":"Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50(9):1561\u20131573","journal-title":"J Chem Inf Model"},{"key":"199_CR28","unstructured":"Weisstein E (2000) Normal sum distribution: Wolfram Research, Inc. http:\/\/mathworld.wolfram.com\/NormalSumDistribution.html"},{"issue":"1","key":"199_CR29","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1124\/mol.105.021865","volume":"70","author":"Z Liao","year":"2006","unstructured":"Liao Z, Thibaut L, Jobson A, Pommier Y (2006) Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol Pharmacol 70(1):366","journal-title":"Mol Pharmacol"},{"issue":"18","key":"199_CR30","doi-asserted-by":"publisher","first-page":"180901","DOI":"10.1063\/1.5052551","volume":"149","author":"A Krylov","year":"2018","unstructured":"Krylov A, Windus TL, Barnes T, Marin-Rimoldi E, Nash JA, Pritchard B et al (2018) Perspective: computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J Chem Phys 149(18):180901","journal-title":"J Chem Phys"},{"issue":"5","key":"199_CR31","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1109\/MCSE.2018.05329813","volume":"20","author":"N Wilkins-Diehr","year":"2018","unstructured":"Wilkins-Diehr N, Crawford TD, NSF\u2019s Inaugural Software Institutes (2018) The science gateways community institute and the molecular sciences software institute. Comput Sci Eng 20(5):26\u201338","journal-title":"Comput Sci Eng"}],"container-title":["Journal of Computer-Aided Molecular Design"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10822-019-00199-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10822-019-00199-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10822-019-00199-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,15]],"date-time":"2023-09-15T13:23:51Z","timestamp":1694784231000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10822-019-00199-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4,6]]},"references-count":31,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2019,5]]}},"alternative-id":["199"],"URL":"https:\/\/doi.org\/10.1007\/s10822-019-00199-8","relation":{},"ISSN":["0920-654X","1573-4951"],"issn-type":[{"value":"0920-654X","type":"print"},{"value":"1573-4951","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,4,6]]},"assertion":[{"value":"15 August 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 March 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 April 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}