{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,19]],"date-time":"2024-06-19T05:54:20Z","timestamp":1718776460488},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2016,8,1]],"date-time":"2016-08-01T00:00:00Z","timestamp":1470009600000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","award":["ANR-10-LABX-0034"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Comput Aided Mol Des"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1007\/s10822-016-9930-3","type":"journal-article","created":{"date-parts":[[2016,8,1]],"date-time":"2016-08-01T09:22:44Z","timestamp":1470043364000},"page":"669-683","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015"],"prefix":"10.1007","volume":"30","author":[{"given":"Inna","family":"Slynko","sequence":"first","affiliation":[]},{"given":"Franck","family":"Da Silva","sequence":"additional","affiliation":[]},{"given":"Guillaume","family":"Bret","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0577-641X","authenticated-orcid":false,"given":"Didier","family":"Rognan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,8,1]]},"reference":[{"key":"9930_CR1","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.tips.2014.12.001","volume":"36","author":"YC Chen","year":"2015","unstructured":"Chen YC (2015) Beware of docking! Trends Pharmacol Sci 36:78\u201395","journal-title":"Trends Pharmacol Sci"},{"key":"9930_CR2","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/0022-2836(82)90153-X","volume":"161","author":"ID Kuntz","year":"1982","unstructured":"Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule\u2013ligand interactions. J Mol Biol 161:269\u2013288","journal-title":"J Mol Biol"},{"issue":"Suppl 1","key":"9930_CR3","doi-asserted-by":"crossref","first-page":"S7","DOI":"10.1038\/sj.bjp.0707515","volume":"153","author":"N Moitessier","year":"2008","unstructured":"Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking\/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7\u201326","journal-title":"Br J Pharmacol"},{"key":"9930_CR4","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1002\/jmr.2471","volume":"28","author":"E Yuriev","year":"2015","unstructured":"Yuriev E, Holien J, Ramsland PA (2015) Improvements, trends, and new ideas in molecular docking: 2012\u20132013 in review. J Mol Recognit 28:581\u2013604","journal-title":"J Mol Recognit"},{"key":"9930_CR5","doi-asserted-by":"crossref","first-page":"2296","DOI":"10.2174\/0929867311320180002","volume":"20","author":"SF Sousa","year":"2013","unstructured":"Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ (2013) Protein\u2013ligand docking in the new millennium\u2014a retrospective of 10\u00a0years in the field. Curr Med Chem 20:2296\u20132314","journal-title":"Curr Med Chem"},{"key":"9930_CR6","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1146\/annurev.biophys.32.110601.142532","volume":"32","author":"N Brooijmans","year":"2003","unstructured":"Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335\u2013373","journal-title":"Annu Rev Biophys Biomol Struct"},{"key":"9930_CR7","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1002\/prot.20149","volume":"57","author":"E Kellenberger","year":"2004","unstructured":"Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225\u2013242","journal-title":"Proteins"},{"key":"9930_CR8","doi-asserted-by":"crossref","first-page":"5912","DOI":"10.1021\/jm050362n","volume":"49","author":"GL Warren","year":"2006","unstructured":"Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912\u20135931","journal-title":"J Med Chem"},{"key":"9930_CR9","doi-asserted-by":"crossref","first-page":"1022","DOI":"10.1021\/acs.jcim.5b00387","volume":"56","author":"RD Smith","year":"2016","unstructured":"Smith RD, Damm-Ganamet KL, Dunbar JB Jr, Ahmed A, Chinnaswamy K, Delproposto JE, Kubish GM, Tinberg CE, Khare SD, Dou J, Doyle L, Stuckey JA, Baker D, Carlson HA (2016) CSAR benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring\/ranking challenge. J Chem Inf Model 56:1022\u20131031","journal-title":"J Chem Inf Model"},{"key":"9930_CR10","doi-asserted-by":"crossref","first-page":"1853","DOI":"10.1021\/ci400025f","volume":"53","author":"KL Damm-Ganamet","year":"2013","unstructured":"Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011\u20132012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model 53:1853\u20131870","journal-title":"J Chem Inf Model"},{"key":"9930_CR11","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1002\/jcc.21643","volume":"32","author":"D Plewczynski","year":"2011","unstructured":"Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742\u2013755","journal-title":"J Comput Chem"},{"key":"9930_CR12","doi-asserted-by":"crossref","first-page":"1717","DOI":"10.1021\/ci500081m","volume":"54","author":"Y Li","year":"2014","unstructured":"Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54:1717\u20131736","journal-title":"J Chem Inf Model"},{"key":"9930_CR13","doi-asserted-by":"crossref","first-page":"2090","DOI":"10.1021\/ci200034y","volume":"51","author":"FN Novikov","year":"2011","unstructured":"Novikov FN, Zeifman AA, Stroganov OV, Stroylov VS, Kulkov V, Chilov GG (2011) CSAR scoring challenge reveals the need for new concepts in estimating protein\u2013ligand binding affinity. J Chem Inf Model 51:2090\u20132096","journal-title":"J Chem Inf Model"},{"key":"9930_CR14","doi-asserted-by":"crossref","first-page":"2174","DOI":"10.2174\/1381612811319120005","volume":"19","author":"JC Wang","year":"2013","unstructured":"Wang JC, Lin JH (2013) Scoring functions for prediction of protein\u2013ligand interactions. Curr Pharm Des 19:2174\u20132182","journal-title":"Curr Pharm Des"},{"key":"9930_CR15","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.jmgm.2015.10.012","volume":"62","author":"SI Virtanen","year":"2015","unstructured":"Virtanen SI, Niinivehmas SP, Pentikainen OT (2015) Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening. J Mol Graph Model 62:303\u2013318","journal-title":"J Mol Graph Model"},{"key":"9930_CR16","doi-asserted-by":"crossref","first-page":"4040","DOI":"10.1021\/jm049081q","volume":"48","author":"B Kuhn","year":"2005","unstructured":"Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040\u20134048","journal-title":"J Med Chem"},{"key":"9930_CR17","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1021\/ci100275a","volume":"51","author":"T Hou","year":"2011","unstructured":"Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM\/PBSA and MM\/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69\u201382","journal-title":"J Chem Inf Model"},{"key":"9930_CR18","doi-asserted-by":"crossref","first-page":"2132","DOI":"10.1021\/ci200078f","volume":"51","author":"L Li","year":"2011","unstructured":"Li L, Wang B, Meroueh SO (2011) Support vector regression scoring of receptor\u2013ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 51:2132\u20132138","journal-title":"J Chem Inf Model"},{"key":"9930_CR19","doi-asserted-by":"crossref","first-page":"1923","DOI":"10.1021\/ci400120b","volume":"53","author":"D Zilian","year":"2013","unstructured":"Zilian D, Sotriffer CA (2013) SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein\u2013ligand complexes. J Chem Inf Model 53:1923\u20131933","journal-title":"J Chem Inf Model"},{"key":"9930_CR20","doi-asserted-by":"crossref","first-page":"944","DOI":"10.1021\/ci500091r","volume":"54","author":"PJ Ballester","year":"2014","unstructured":"Ballester PJ, Schreyer A, Blundell TL (2014) Does a more precise chemical description of protein\u2013ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 54:944\u2013955","journal-title":"J Chem Inf Model"},{"key":"9930_CR21","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.artmed.2015.02.002","volume":"63","author":"MA Khamis","year":"2015","unstructured":"Khamis MA, Gomaa W, Ahmed WF (2015) Machine learning in computational docking. Artif Intell Med 63:135\u2013152","journal-title":"Artif Intell Med"},{"key":"9930_CR22","doi-asserted-by":"crossref","first-page":"2807","DOI":"10.1021\/ci500406k","volume":"54","author":"J Gabel","year":"2014","unstructured":"Gabel J, Desaphy J, Rognan D (2014) Beware of machine learning-based scoring functions-on the danger of developing black boxes. J Chem Inf Model 54:2807\u20132815","journal-title":"J Chem Inf Model"},{"key":"9930_CR23","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1023\/A:1016399411208","volume":"16","author":"SA Hindle","year":"2002","unstructured":"Hindle SA, Rarey M, Buning C, Lengauer T (2002) Flexible docking under pharmacophore type constraints. J Comput Aided Mol Des 16:129\u2013149","journal-title":"J Comput Aided Mol Des"},{"key":"9930_CR24","doi-asserted-by":"crossref","first-page":"1771","DOI":"10.1021\/acs.jcim.5b00142","volume":"55","author":"BP Kelley","year":"2015","unstructured":"Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) POSIT: flexible shape-guided docking for pose prediction. J Chem Inf Model 55:1771\u20131780","journal-title":"J Chem Inf Model"},{"key":"9930_CR25","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1021\/acs.jcim.5b00279","volume":"56","author":"A Kumar","year":"2016","unstructured":"Kumar A, Zhang KY (2016) Application of shape similarity in pose selection and virtual screening in CSARdock2014 exercise. J Chem Inf Model 56:965\u2013973","journal-title":"J Chem Inf Model"},{"key":"9930_CR26","doi-asserted-by":"crossref","first-page":"1460","DOI":"10.1021\/acs.jcim.5b00186","volume":"55","author":"C Gao","year":"2015","unstructured":"Gao C, Thorsteinson N, Watson I, Wang J, Vieth M (2015) Knowledge-based strategy to improve ligand pose prediction accuracy for lead optimization. J Chem Inf Model 55:1460\u20131468","journal-title":"J Chem Inf Model"},{"key":"9930_CR27","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1021\/jm030331x","volume":"47","author":"Z Deng","year":"2004","unstructured":"Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein\u2013ligand binding interactions. J Med Chem 47:337\u2013344","journal-title":"J Med Chem"},{"key":"9930_CR28","doi-asserted-by":"crossref","first-page":"580","DOI":"10.1021\/acs.jcim.5b00745","volume":"56","author":"A Anighoro","year":"2016","unstructured":"Anighoro A, Bajorath J (2016) Three-dimensional similarity in molecular docking: prioritizing ligand poses on the basis of experimental binding modes. J Chem Inf Model 56:580\u2013587","journal-title":"J Chem Inf Model"},{"key":"9930_CR29","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1021\/ci600342e","volume":"47","author":"G Marcou","year":"2007","unstructured":"Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195\u2013207","journal-title":"J Chem Inf Model"},{"key":"9930_CR30","doi-asserted-by":"crossref","first-page":"1942","DOI":"10.1021\/ci049870g","volume":"44","author":"MD Kelly","year":"2004","unstructured":"Kelly MD, Mancera RL (2004) Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-based drug design. J Chem Inf Comput Sci 44:1942\u20131951","journal-title":"J Chem Inf Comput Sci"},{"key":"9930_CR31","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1021\/ci050420d","volume":"46","author":"CP Mpamhanga","year":"2006","unstructured":"Mpamhanga CP, Chen B, McLay IM, Willett P (2006) Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model 46:686\u2013698","journal-title":"J Chem Inf Model"},{"key":"9930_CR32","doi-asserted-by":"crossref","first-page":"e8554","DOI":"10.1371\/journal.pone.0008554","volume":"5","author":"M Chalopin","year":"2010","unstructured":"Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, Andriantsitohaina R (2010) Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS ONE 5:e8554","journal-title":"PLoS ONE"},{"key":"9930_CR33","doi-asserted-by":"crossref","first-page":"3222","DOI":"10.1021\/jm8001058","volume":"51","author":"J Venhorst","year":"2008","unstructured":"Venhorst J, Nunez S, Terpstra JW, Kruse CG (2008) Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. J Med Chem 51:3222\u20133229","journal-title":"J Med Chem"},{"key":"9930_CR34","doi-asserted-by":"crossref","first-page":"2159","DOI":"10.1002\/cmdc.201100317","volume":"6","author":"C Graaf de","year":"2011","unstructured":"de Graaf C, Rein C, Piwnica D, Giordanetto F, Rognan D (2011) Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 6:2159\u20132169","journal-title":"ChemMedChem"},{"key":"9930_CR35","doi-asserted-by":"crossref","first-page":"8195","DOI":"10.1021\/jm2011589","volume":"54","author":"C Graaf de","year":"2011","unstructured":"de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R (2011) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54:8195\u20138206","journal-title":"J Med Chem"},{"key":"9930_CR36","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1021\/ci300566n","volume":"53","author":"J Desaphy","year":"2013","unstructured":"Desaphy J, Raimbaud E, Ducrot P, Rognan D (2013) Encoding protein\u2013ligand interaction patterns in fingerprints and graphs. J Chem Inf Model 53:623\u2013637","journal-title":"J Chem Inf Model"},{"key":"9930_CR37","doi-asserted-by":"crossref","first-page":"D399","DOI":"10.1093\/nar\/gku928","volume":"43","author":"J Desaphy","year":"2015","unstructured":"Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable binding sites\u201410\u00a0years on. Nucleic Acids Res 43:D399\u2013D404","journal-title":"Nucleic Acids Res"},{"key":"9930_CR38","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1145\/362342.362367","volume":"16","author":"C Bron","year":"1973","unstructured":"Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16:575\u2013577","journal-title":"Commun ACM"},{"key":"9930_CR39","first-page":"209","volume":"5","author":"HC Johnston","year":"1976","unstructured":"Johnston HC (1976) Cliques of a graph\u2014variations on the Bron\u2013Kerbosch algorithm. Int J Parallel Prog 5:209\u2013238","journal-title":"Int J Parallel Prog"},{"key":"9930_CR40","doi-asserted-by":"crossref","first-page":"478","DOI":"10.1107\/S0108767305015266","volume":"61","author":"DL Theobald","year":"2005","unstructured":"Theobald DL (2005) Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallogr A 61:478\u2013480","journal-title":"Acta Crystallogr A"},{"key":"9930_CR41","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/s10822-007-9114-2","volume":"21","author":"AN Jain","year":"2007","unstructured":"Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281\u2013306","journal-title":"J Comput Aided Mol Des"},{"key":"9930_CR42","doi-asserted-by":"crossref","first-page":"6582","DOI":"10.1021\/jm300687e","volume":"55","author":"MM Mysinger","year":"2012","unstructured":"Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582\u20136594","journal-title":"J Med Chem"},{"key":"9930_CR43","unstructured":"Drug Design Data Resource. https:\/\/drugdesigndata.org\/about\/grand-challenge-2015"},{"key":"9930_CR44","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1186\/1758-2946-6-12","volume":"6","author":"S Bietz","year":"2014","unstructured":"Bietz S, Urbaczek S, Schulz B, Rarey M (2014) Protoss: a holistic approach to predict tautomers and protonation states in protein\u2013ligand complexes. J Cheminform 6:12","journal-title":"J Cheminform"},{"key":"9930_CR45","unstructured":"Tripos International, St. Louis, MO 63144\u20132319, USA"},{"key":"9930_CR46","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1093\/nar\/28.1.235","volume":"28","author":"HM Berman","year":"2000","unstructured":"Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235\u2013242","journal-title":"Nucleic Acids Res"},{"key":"9930_CR47","doi-asserted-by":"crossref","first-page":"D204","DOI":"10.1093\/nar\/gku989","volume":"43","author":"UniProt Consortium","year":"2015","unstructured":"UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204\u2013D212","journal-title":"Nucleic Acids Res"},{"key":"9930_CR48","unstructured":"Molecular Networks GmbH, Erlangen, Germany"},{"key":"9930_CR49","doi-asserted-by":"crossref","first-page":"3557","DOI":"10.1016\/j.bmcl.2011.04.130","volume":"21","author":"PP Kung","year":"2011","unstructured":"Kung PP, Sinnema PJ, Richardson P, Hickey MJ, Gajiwala KS, Wang F, Huang B, McClellan G, Wang J, Maegley K, Bergqvist S, Mehta PP, Kania R (2011) Design strategies to target crystallographic waters applied to the Hsp90 molecular chaperone. Bioorg Med Chem Lett 21:3557\u20133562","journal-title":"Bioorg Med Chem Lett"}],"container-title":["Journal of Computer-Aided Molecular Design"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10822-016-9930-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10822-016-9930-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10822-016-9930-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,9,24]],"date-time":"2020-09-24T16:27:17Z","timestamp":1600964837000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10822-016-9930-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,8,1]]},"references-count":49,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2016,9]]}},"alternative-id":["9930"],"URL":"https:\/\/doi.org\/10.1007\/s10822-016-9930-3","relation":{},"ISSN":["0920-654X","1573-4951"],"issn-type":[{"value":"0920-654X","type":"print"},{"value":"1573-4951","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,8,1]]}}}