{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:18:18Z","timestamp":1740122298576,"version":"3.37.3"},"reference-count":54,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key R&D Program of China","doi-asserted-by":"crossref","award":["2018YFB2100400"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Guangxi Key Laboratory of Cryptography and Information Security","award":["GXIS202119"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62102276"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Geoinformatica"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1007\/s10707-021-00458-7","type":"journal-article","created":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T02:02:52Z","timestamp":1638324172000},"page":"39-60","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["ASNN-FRR: A traffic-aware neural network for fastest route recommendation"],"prefix":"10.1007","volume":"27","author":[{"given":"Chaoxiong","family":"Wang","sequence":"first","affiliation":[]},{"given":"Chao","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hai","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Jianfeng","family":"Qu","sequence":"additional","affiliation":[]},{"given":"Lihua","family":"Yin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,12,1]]},"reference":[{"key":"458_CR1","doi-asserted-by":"crossref","unstructured":"Bai L, Yao L, Kanhere S, Wang X, Sheng Q et al (2019) Stg2seq:, Spatial-temporal graph to sequence model for multi-step passenger demand forecasting. arXiv:1905.10069","DOI":"10.24963\/ijcai.2019\/274"},{"key":"458_CR2","doi-asserted-by":"crossref","unstructured":"Bai L, Yao L, Kanhere SS, Yang Z, Chu J, Wang X (2019) Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Pacific-asia conference on knowledge discovery and data mining, Springer, pp 29\u201342","DOI":"10.1007\/978-3-030-16145-3_3"},{"key":"458_CR3","unstructured":"Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. arXiv:2007.02842"},{"key":"458_CR4","unstructured":"Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. Journal of machine learning research 13(2):281\u2013305"},{"key":"458_CR5","unstructured":"Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons"},{"key":"458_CR6","doi-asserted-by":"crossref","unstructured":"Chen L, Shang S, Jensen CS, Yao B, Zhang Z, Shao L (2019) Effective and efficient reuse of past travel behavior for route recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 488\u2013498","DOI":"10.1145\/3292500.3330835"},{"issue":"1","key":"458_CR7","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1007\/s10707-019-00373-y","volume":"24","author":"L Chen","year":"2020","unstructured":"Chen L, Shang S, Yang C, Li J (2020) Spatial keyword search: a survey. GeoInformatica 24(1):85\u2013106","journal-title":"GeoInformatica"},{"key":"458_CR8","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1016\/j.neucom.2020.03.120","volume":"428","author":"X Chen","year":"2021","unstructured":"Chen X, Xu J, Zhou R, Chen W, Fang J, Liu C (2021) Trajvae: a variational autoencoder model for trajectory generation. Neurocomputing 428:332\u2013339","journal-title":"Neurocomputing"},{"issue":"1","key":"458_CR9","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10707-019-00372-z","volume":"24","author":"X Chen","year":"2020","unstructured":"Chen X, Xu J, Zhou R, Zhao P, Liu C, Fang J, Zhao L (2020) S 2 r-tree: a pivot-based indexing structure for semantic-aware spatial keyword search. GeoInformatica 24(1):3\u201325","journal-title":"GeoInformatica"},{"key":"458_CR10","doi-asserted-by":"crossref","unstructured":"Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest paths over large graphs. In: Proceedings of the 11th international conference on Extending database technology: Advances in database technology, pp 205\u2013216","DOI":"10.1145\/1353343.1353371"},{"key":"458_CR11","doi-asserted-by":"crossref","unstructured":"Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 922\u2013929","DOI":"10.1609\/aaai.v33i01.3301922"},{"issue":"1","key":"458_CR12","first-page":"2","volume":"12","author":"T Hunter","year":"2009","unstructured":"Hunter T, Herring R, Abbeel P, Bayen A (2009) Path and travel time inference from gps probe vehicle data. NIPS Analyzing Networks and Learning with Graphs 12(1):2","journal-title":"NIPS Analyzing Networks and Learning with Graphs"},{"key":"458_CR13","unstructured":"Jindal I, Chen X, Nokleby M, Ye J et al (2017) A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv:1710.04350"},{"key":"458_CR14","doi-asserted-by":"crossref","unstructured":"Kanoulas E, Du Y, Xia T, Zhang D (2006) Finding fastest paths on a road network with speed patterns. In: 22Nd international conference on data engineering (ICDE\u201906), IEEE, pp 10\u201310","DOI":"10.1109\/ICDE.2006.71"},{"key":"458_CR15","unstructured":"Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907"},{"issue":"v8","key":"458_CR16","first-page":"v9","volume":"7","author":"K Li","year":"2020","unstructured":"Li K, Shang SS et al (2020) Towards alleviating traffic congestion:, Optimal route planning for massive-scale trips. Traffic 7(v8):v9","journal-title":"Traffic"},{"key":"458_CR17","doi-asserted-by":"crossref","unstructured":"Li L, Wang S, Zhou X (2020) Fastest path query answering using time-dependent hop-labeling in road network. IEEE Transactions on Knowledge and Data Engineering","DOI":"10.1109\/TKDE.2020.2981062"},{"key":"458_CR18","doi-asserted-by":"crossref","unstructured":"Li Y, Fu K, Wang Z, Shahabi C, Ye J, Liu Y (2018) Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1695\u20131704","DOI":"10.1145\/3219819.3220033"},{"issue":"4","key":"458_CR19","doi-asserted-by":"publisher","first-page":"794","DOI":"10.1007\/s11390-020-0314-8","volume":"35","author":"Y Li","year":"2020","unstructured":"Li Y, Xu JJ, Zhao PP, Fang JH, Chen W, Zhao L (2020) Atlrec: an attentional adversarial transfer learning network for cross-domain recommendation. J Comput Sci Technol 35(4):794\u2013808","journal-title":"J Comput Sci Technol"},{"issue":"4","key":"458_CR20","doi-asserted-by":"publisher","first-page":"794","DOI":"10.1007\/s11390-020-0314-8","volume":"35","author":"Y Li","year":"2020","unstructured":"Li Y, Xu JJ, Zhao PP, Fang JH, Chen W, Zhao L (2020) Atlrec: an attentional adversarial transfer learning network for cross-domain recommendation. J Comput Sci Technol 35(4):794\u2013808","journal-title":"J Comput Sci Technol"},{"key":"458_CR21","unstructured":"Li Y, Yu R, Shahabi C, Liu Y (2017) Diffusion convolutional recurrent neural network:, Data-driven traffic forecasting. arXiv:1707.01926"},{"key":"458_CR22","doi-asserted-by":"crossref","unstructured":"Liao B, Zhang J, Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F (2018) Deep sequence learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 537\u2013546","DOI":"10.1145\/3219819.3219895"},{"issue":"11","key":"458_CR23","doi-asserted-by":"publisher","first-page":"2827","DOI":"10.1109\/TKDE.2016.2598171","volume":"28","author":"J Liu","year":"2016","unstructured":"Liu J, Zhao K, Sommer P, Shang S, Kusy B, Lee JG, Jurdak R (2016) A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans Knowl Data Eng 28 (11):2827\u20132841","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"458_CR24","doi-asserted-by":"crossref","unstructured":"Liu S, Johns E, Davison AJ (2019) End-to-end multi-task learning with attention. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 1871\u20131880","DOI":"10.1109\/CVPR.2019.00197"},{"key":"458_CR25","doi-asserted-by":"crossref","unstructured":"Lv Z, Xu J, Zheng K, Yin H, Zhao P, Zhou X (2018) Lc-rnn: a deep learning model for traffic speed prediction. In: IJCAI, pp 3470\u20133476","DOI":"10.24963\/ijcai.2018\/482"},{"key":"458_CR26","doi-asserted-by":"crossref","unstructured":"Mallick T, Balaprakash P, Rask E, Macfarlane J (2019) Graph-partitioning based diffusion convolution recurrent neural network for large-scale traffic forecasting. arXiv:1909.11197","DOI":"10.1177\/0361198120930010"},{"key":"458_CR27","doi-asserted-by":"crossref","unstructured":"Nannicini G, Delling D, Liberti L, Schultes D (2008) Bidirectional a* search for time-dependent fast paths. In: International workshop on experimental and efficient algorithms, Springer, pp 334\u2013346","DOI":"10.1007\/978-3-540-68552-4_25"},{"issue":"8","key":"458_CR28","doi-asserted-by":"publisher","first-page":"970,256","DOI":"10.1155\/2015\/970256","volume":"11","author":"X Niu","year":"2015","unstructured":"Niu X, Zhu Y, Cao Q, Zhang X, Xie W, Zheng K (2015) An online-traffic-prediction based route finding mechanism for smart city. International Journal of Distributed Sensor Networks 11(8):970,256","journal-title":"International Journal of Distributed Sensor Networks"},{"key":"458_CR29","doi-asserted-by":"crossref","unstructured":"Rahmani M, Jenelius E, Koutsopoulos HN (2013) Route travel time estimation using low-frequency floating car data. In: 16Th international IEEE conference on intelligent transportation systems (ITSC 2013), IEEE, pp 2292\u20132297","DOI":"10.1109\/ITSC.2013.6728569"},{"issue":"7","key":"458_CR30","doi-asserted-by":"publisher","first-page":"1549","DOI":"10.1109\/TKDE.2017.2685504","volume":"29","author":"S Shang","year":"2017","unstructured":"Shang S, Chen L, Jensen CS, Wen JR, Kalnis P (2017) Searching trajectories by regions of interest. IEEE Trans Knowl Data Eng 29(7):1549\u20131562","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"5","key":"458_CR31","doi-asserted-by":"publisher","first-page":"1132","DOI":"10.1109\/TKDE.2015.2509998","volume":"28","author":"S Shang","year":"2015","unstructured":"Shang S, Chen L, Wei Z, Jensen CS, Wen JR, Kalnis P (2015) Collective travel planning in spatial networks. IEEE Trans Knowl Data Eng 28(5):1132\u20131146","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"458_CR32","doi-asserted-by":"crossref","unstructured":"Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2017) Trajectory similarity join in spatial networks. Proceedings of the VLDB Endowment 10(11):1178\u20131189","DOI":"10.14778\/3137628.3137630"},{"issue":"3","key":"458_CR33","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1007\/s00778-018-0502-0","volume":"27","author":"S Shang","year":"2018","unstructured":"Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. The VLDB J 27 (3):395\u2013420","journal-title":"The VLDB J"},{"issue":"3","key":"458_CR34","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/s00778-013-0331-0","volume":"23","author":"S Shang","year":"2014","unstructured":"Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. The VLDB J 23 (3):449\u2013468","journal-title":"The VLDB J"},{"issue":"1","key":"458_CR35","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1007\/s10707-019-00358-x","volume":"24","author":"X Song","year":"2020","unstructured":"Song X, Xu J, Zhou R, Liu C, Zheng K, Zhao P, Falkner N (2020) Collective spatial keyword search on activity trajectories. GeoInformatica 24(1):61\u201384","journal-title":"GeoInformatica"},{"key":"458_CR36","doi-asserted-by":"crossref","unstructured":"Sun J, Xu J, Zhou R, Zheng K, Liu C (2018) Discovering expert drivers from trajectories. In: 2018 IEEE 34Th international conference on data engineering (ICDE), IEEE, pp 1332\u20131335","DOI":"10.1109\/ICDE.2018.00143"},{"issue":"2","key":"458_CR37","doi-asserted-by":"publisher","first-page":"e0147,263","DOI":"10.1371\/journal.pone.0147263","volume":"11","author":"J Tang","year":"2016","unstructured":"Tang J, Zou Y, Ash J, Zhang S, Liu F, Wang Y (2016) Travel time estimation using freeway point detector data based on evolving fuzzy neural inference system. PloS One 11(2):e0147,263","journal-title":"PloS One"},{"issue":"3","key":"458_CR38","doi-asserted-by":"publisher","first-page":"805","DOI":"10.1007\/s11280-021-00877-4","volume":"24","author":"F Wang","year":"2021","unstructured":"Wang F, Xu J, Liu C, Zhou R, Zhao P (2021) On prediction of traffic flows in smart cities: a multitask deep learning based approach. World Wide Web 24(3):805\u2013823","journal-title":"World Wide Web"},{"issue":"2","key":"458_CR39","first-page":"1","volume":"10","author":"H Wang","year":"2019","unstructured":"Wang H, Tang X, Kuo YH, Kifer D, Li Z (2019) A simple baseline for travel time estimation using large-scale trip data. ACM Trans Intell Syst Technol (TIST) 10(2):1\u201322","journal-title":"ACM Trans Intell Syst Technol (TIST)"},{"key":"458_CR40","doi-asserted-by":"crossref","unstructured":"Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 25\u201334","DOI":"10.1145\/2623330.2623656"},{"issue":"4","key":"458_CR41","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TITS.2004.837813","volume":"5","author":"CH Wu","year":"2004","unstructured":"Wu CH, Ho JM, Lee DT (2004) Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst 5(4):276\u2013281","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"458_CR42","doi-asserted-by":"crossref","unstructured":"Wu N, Wang J, Zhao WX, Jin Y (2019) Learning to effectively estimate the travel time for fastest route recommendation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 1923\u20131932","DOI":"10.1145\/3357384.3357907"},{"key":"458_CR43","doi-asserted-by":"crossref","unstructured":"Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121","DOI":"10.24963\/ijcai.2019\/264"},{"key":"458_CR44","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1016\/j.future.2019.03.010","volume":"98","author":"J Xu","year":"2019","unstructured":"Xu J, Chen J, Zhou R, Fang J, Liu C (2019) On workflow aware location-based service composition for personal trip planning. Futur Gener Comput Syst 98:274\u2013285","journal-title":"Futur Gener Comput Syst"},{"key":"458_CR45","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1016\/j.future.2019.03.010","volume":"98","author":"J Xu","year":"2019","unstructured":"Xu J, Chen J, Zhou R, Fang J, Liu C (2019) On workflow aware location-based service composition for personal trip planning. Futur Gener Comput Syst 98:274\u2013285","journal-title":"Futur Gener Comput Syst"},{"issue":"02","key":"458_CR46","doi-asserted-by":"publisher","first-page":"651","DOI":"10.1109\/TKDE.2019.2932984","volume":"33","author":"J Xu","year":"2021","unstructured":"Xu J, Zhao J, Zhou R, Liu C, Zhao P, Zhao L (2021) Predicting destinations by a deep learning based approach. IEEE Trans Knowl Data Eng 33(02):651\u2013666","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"02","key":"458_CR47","doi-asserted-by":"publisher","first-page":"651","DOI":"10.1109\/TKDE.2019.2932984","volume":"33","author":"J Xu","year":"2021","unstructured":"Xu J, Zhao J, Zhou R, Liu C, Zhao P, Zhao L (2021) Predicting destinations by a deep learning based approach. IEEE Trans Knowl Data Eng 33(02):651\u2013666","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"458_CR48","doi-asserted-by":"crossref","unstructured":"Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, pp 1\u201317","DOI":"10.1007\/s10707-020-00422-x"},{"key":"458_CR49","doi-asserted-by":"crossref","unstructured":"Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, pp 1\u201317","DOI":"10.1007\/s10707-020-00422-x"},{"key":"458_CR50","doi-asserted-by":"crossref","unstructured":"Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z (2018) Deep multi-view spatial-temporal network for taxi demand prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32","DOI":"10.1609\/aaai.v32i1.11836"},{"key":"458_CR51","doi-asserted-by":"crossref","unstructured":"Yu B, Yin H, Zhu Z (2017) Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv:1709.04875","DOI":"10.24963\/ijcai.2018\/505"},{"key":"458_CR52","doi-asserted-by":"crossref","unstructured":"Yuan H, Li G, Bao Z, Feng L (2020) Effective travel time estimation: When historical trajectories over road networks matter. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp 2135\u20132149","DOI":"10.1145\/3318464.3389771"},{"key":"458_CR53","doi-asserted-by":"crossref","unstructured":"Yuan J, Zheng Y, Xie X, Sun G (2011) Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 316\u2013324","DOI":"10.1145\/2020408.2020462"},{"issue":"1","key":"458_CR54","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1109\/TKDE.2011.200","volume":"25","author":"J Yuan","year":"2011","unstructured":"Yuan J, Zheng Y, Xie X, Sun G (2011) T-drive: Enhancing driving directions with taxi drivers\u2019 intelligence. IEEE Trans Knowl Data Eng 25(1):220\u2013232","journal-title":"IEEE Trans Knowl Data Eng"}],"container-title":["GeoInformatica"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10707-021-00458-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10707-021-00458-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10707-021-00458-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,16]],"date-time":"2023-01-16T03:23:26Z","timestamp":1673839406000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10707-021-00458-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,1]]},"references-count":54,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["458"],"URL":"https:\/\/doi.org\/10.1007\/s10707-021-00458-7","relation":{},"ISSN":["1384-6175","1573-7624"],"issn-type":[{"type":"print","value":"1384-6175"},{"type":"electronic","value":"1573-7624"}],"subject":[],"published":{"date-parts":[[2021,12,1]]},"assertion":[{"value":"13 July 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 September 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 October 2021","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 December 2021","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}