{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,22]],"date-time":"2024-02-22T00:54:24Z","timestamp":1708563264435},"reference-count":72,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2023,10,20]],"date-time":"2023-10-20T00:00:00Z","timestamp":1697760000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,20]],"date-time":"2023-10-20T00:00:00Z","timestamp":1697760000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","award":["307892\/2020-4"],"id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","award":["2021\/06870-3","2022\/10683-7"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["IC200100009"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1007\/s10618-023-00957-1","type":"journal-article","created":{"date-parts":[[2023,10,20]],"date-time":"2023-10-20T12:01:59Z","timestamp":1697803319000},"page":"461-500","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Optimal selection of benchmarking datasets for unbiased machine learning algorithm evaluation"],"prefix":"10.1007","volume":"38","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9923-7419","authenticated-orcid":false,"given":"Jo\u00e3o Luiz Junho","family":"Pereira","sequence":"first","affiliation":[]},{"given":"Kate","family":"Smith-Miles","sequence":"additional","affiliation":[]},{"given":"Mario Andr\u00e9s","family":"Mu\u00f1oz","sequence":"additional","affiliation":[]},{"given":"Ana Carolina","family":"Lorena","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,20]]},"reference":[{"key":"957_CR1","doi-asserted-by":"publisher","first-page":"665","DOI":"10.1016\/j.ins.2021.11.003","volume":"584","author":"GJ Aguiar","year":"2022","unstructured":"Aguiar GJ, Santana EJ, de Carvalho AC, Junior SB (2022) Using meta-learning for multi-target regression. Inf Sci 584:665\u2013684","journal-title":"Inf Sci"},{"key":"957_CR2","first-page":"255","volume":"17","author":"J Alcal\u00e1-Fdez","year":"2011","unstructured":"Alcal\u00e1-Fdez J, Fern\u00e1ndez A, Luengo J, Derrac J, Garc\u00eda S, S\u00e1nchez L, Herrera F (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Multiple-Valued Logic Soft Comput 17:255\u2013287","journal-title":"J Multiple-Valued Logic Soft Comput"},{"issue":"2","key":"957_CR3","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1016\/j.ejor.2022.04.012","volume":"304","author":"H Alipour","year":"2023","unstructured":"Alipour H, Mu\u00f1oz MA, Smith-Miles K (2023) Enhanced instance space analysis for the maximum flow problem. Eur J Oper Res 304(2):411\u2013428","journal-title":"Eur J Oper Res"},{"key":"957_CR4","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1016\/j.procs.2016.02.095","volume":"78","author":"P Arora","year":"2016","unstructured":"Arora P, Varshney S et al (2016) Analysis of k-means and k-medoids algorithm for big data. Procedia Comput Sci 78:507\u2013512","journal-title":"Procedia Comput Sci"},{"issue":"2","key":"957_CR5","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1016\/j.disopt.2004.03.007","volume":"1","author":"J Bang-Jensen","year":"2004","unstructured":"Bang-Jensen J, Gutin G, Yeo A (2004) When the greedy algorithm fails. Discret Optim 1(2):121\u2013127","journal-title":"Discret Optim"},{"issue":"1","key":"957_CR6","first-page":"2653","volume":"18","author":"A Benavoli","year":"2017","unstructured":"Benavoli A, Corani G, Dem\u0161ar J, Zaffalon M (2017) Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J Mach Learn Res 18(1):2653\u20132688","journal-title":"J Mach Learn Res"},{"key":"957_CR7","unstructured":"Bischl B, Casalicchio G, Feurer M, Hutter F, Lang M, Mantovani RG, van Rijn JN, Vanschoren J (2017) Openml benchmarking suites. arXiv: Machine Learning"},{"key":"957_CR8","unstructured":"Botchkarev A (2018) Performance metrics (error measures) in machine learning regression, forecasting and prognostics: properties and typology. arXiv preprint arXiv:1809.03006"},{"issue":"1","key":"957_CR9","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1093\/imamat\/6.1.76","volume":"6","author":"CG Broyden","year":"1970","unstructured":"Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6(1):76\u201390","journal-title":"IMA J Appl Math"},{"key":"957_CR10","doi-asserted-by":"crossref","unstructured":"Calvo B, Santaf\u00e9\u00a0Rodrigo G (2016) scmamp: statistical comparison of multiple algorithms in multiple problems. The R Journal, Vol 8\/1, Aug 2016","DOI":"10.32614\/RJ-2016-017"},{"issue":"3","key":"957_CR11","doi-asserted-by":"publisher","first-page":"786","DOI":"10.1016\/j.ejor.2007.01.054","volume":"191","author":"I Castillo","year":"2008","unstructured":"Castillo I, Kampas FJ, Pint\u00e9r JD (2008) Solving circle packing problems by global optimization: numerical results and industrial applications. Eur J Oper Res 191(3):786\u2013802","journal-title":"Eur J Oper Res"},{"issue":"2","key":"957_CR12","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1007\/s40192-020-00174-4","volume":"9","author":"CL Clement","year":"2020","unstructured":"Clement CL, Kauwe SK, Sparks TD (2020) Benchmark aflow data sets for machine learning. Integr Mater Manuf Innov 9(2):153\u2013156","journal-title":"Integr Mater Manuf Innov"},{"issue":"1","key":"957_CR13","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.ipl.2008.03.017","volume":"108","author":"R Cohen","year":"2008","unstructured":"Cohen R, Katzir L (2008) The generalized maximum coverage problem. Inf Process Lett 108(1):15\u201322","journal-title":"Inf Process Lett"},{"issue":"2\u20133","key":"957_CR14","doi-asserted-by":"publisher","first-page":"285","DOI":"10.1007\/s10994-015-5486-z","volume":"100","author":"G Corani","year":"2015","unstructured":"Corani G, Benavoli A (2015) A Bayesian approach for comparing cross-validated algorithms on multiple data sets. Mach Learn 100(2\u20133):285\u2013304","journal-title":"Mach Learn"},{"issue":"1","key":"957_CR15","first-page":"108","volume":"96","author":"TH Davenport","year":"2018","unstructured":"Davenport TH, Ronanki R (2018) Artificial intelligence for the real world. Harv Bus Rev 96(1):108\u2013116","journal-title":"Harv Bus Rev"},{"key":"957_CR16","first-page":"1","volume":"7","author":"J Demsar","year":"2006","unstructured":"Demsar J (2006) Statistical comparisons of classifiers over multiple datasets. J Mach Learn Res 7:1\u201330","journal-title":"J Mach Learn Res"},{"key":"957_CR17","unstructured":"Dua D, Graff C (2017) UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml"},{"issue":"3","key":"957_CR18","volume":"1","author":"PD Dueben","year":"2022","unstructured":"Dueben PD, Schultz MG, Chantry M, Gagne DJ, Hall DM, McGovern A (2022) Challenges and benchmark datasets for machine learning in the atmospheric sciences: definition, status, and outlook. Artif Intell Earth Syst 1(3):e210002","journal-title":"Artif Intell Earth Syst"},{"issue":"1","key":"957_CR19","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.patrec.2008.08.010","volume":"30","author":"C Ferri","year":"2009","unstructured":"Ferri C, Hern\u00e1ndez-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recogn Lett 30(1):27\u201338","journal-title":"Pattern Recogn Lett"},{"issue":"4","key":"957_CR20","doi-asserted-by":"publisher","first-page":"1521","DOI":"10.1007\/s00500-015-1603-y","volume":"20","author":"JJ Flores","year":"2016","unstructured":"Flores JJ, Mart\u00ednez J, Calder\u00f3n F (2016) Evolutionary computation solutions to the circle packing problem. Soft Comput 20(4):1521\u20131535","journal-title":"Soft Comput"},{"key":"957_CR21","doi-asserted-by":"crossref","unstructured":"Garcia LP, Lorena AC, de\u00a0Souto M, Ho TK (2018) Classifier recommendation using data complexity measures. In: IEEE Proceedings of ICPR 2018","DOI":"10.1109\/ICPR.2018.8545110"},{"key":"957_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2021.104347","volume":"104","author":"A Hannousse","year":"2021","unstructured":"Hannousse A, Yahiouche S (2021) Towards benchmark datasets for machine learning based website phishing detection: an experimental study. Eng Appl Artif Intell 104:104347","journal-title":"Eng Appl Artif Intell"},{"key":"957_CR23","unstructured":"Hansen N, Auger A, Finck S, Ros R (2014) Real-parameter black-box optimization benchmarking BBOB-2010: Experimental setup. Tech. Rep. RR-7215, INRIA, http:\/\/coco.lri.fr\/downloads\/download15.02\/bbobdocexperiment.pdf"},{"key":"957_CR24","unstructured":"Hochbaum DS (1996) Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems. In: Approximation algorithms for NP-hard problems, pp 94\u2013143"},{"key":"957_CR25","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/BF02430364","volume":"1","author":"JN Hooker","year":"1995","unstructured":"Hooker JN (1995) Testing heuristics: we have it all wrong. J Heurist 1:33\u201342","journal-title":"J Heurist"},{"key":"957_CR26","first-page":"22118","volume":"33","author":"W Hu","year":"2020","unstructured":"Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020) Open graph benchmark: datasets for machine learning on graphs. Adv Neural Inf Process Syst 33:22118\u201322133","journal-title":"Adv Neural Inf Process Syst"},{"key":"957_CR27","doi-asserted-by":"crossref","unstructured":"Janairo AG, Baun JJ, Concepcion R, Relano RJ, Francisco K, Enriquez ML, Bandala A, Vicerra RR, Alipio M, Dadios EP (2022) Optimization of subsurface imaging antenna capacitance through geometry modeling using archimedes, lichtenberg and henry gas solubility metaheuristics. In: 2022 IEEE international IOT, electronics and mechatronics conference (IEMTRONICS), IEEE, pp 1\u20138","DOI":"10.1109\/IEMTRONICS55184.2022.9795789"},{"key":"957_CR28","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1007\/978-3-319-67669-2_2","volume-title":"Nature-inspired algorithms and applied optimization","author":"T Joyce","year":"2018","unstructured":"Joyce T, Herrmann JM (2018) A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang XS (ed) Nature-inspired algorithms and applied optimization. Springer, Cham, pp 27\u201351"},{"issue":"1","key":"957_CR29","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/S0020-0190(99)00031-9","volume":"70","author":"S Khuller","year":"1999","unstructured":"Khuller S, Moss A, Naor JS (1999) The budgeted maximum coverage problem. Inf Process Lett 70(1):39\u201345","journal-title":"Inf Process Lett"},{"issue":"1","key":"957_CR30","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1007\/s12530-022-09432-6","volume":"14","author":"A Kumar","year":"2023","unstructured":"Kumar A, Nadeem M, Banka H (2023) Nature inspired optimization algorithms: a comprehensive overview. Evol Syst 14(1):141\u2013156","journal-title":"Evol Syst"},{"key":"957_CR31","unstructured":"LLC M (2019) International institution of forecasters. https:\/\/forecasters.org\/resources\/time-series-data\/m3-competition\/"},{"issue":"1","key":"957_CR32","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1007\/s10994-017-5681-1","volume":"107","author":"AC Lorena","year":"2018","unstructured":"Lorena AC, Maciel AI, de Miranda PB, Costa IG, Prud\u00eancio RB (2018) Data complexity meta-features for regression problems. Mach Learn 107(1):209\u2013246","journal-title":"Mach Learn"},{"issue":"5","key":"957_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3347711","volume":"52","author":"AC Lorena","year":"2019","unstructured":"Lorena AC, Garcia LP, Lehmann J, Souto MC, Ho TK (2019) How complex is your classification problem? A survey on measuring classification complexity. ACM Comput Surv (CSUR) 52(5):1\u201334","journal-title":"ACM Comput Surv (CSUR)"},{"issue":"1","key":"957_CR34","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1007\/s10115-013-0700-4","volume":"42","author":"J Luengo","year":"2015","unstructured":"Luengo J, Herrera F (2015) An automatic extraction method of the domains of competence for learning classifiers using data complexity measures. Knowl Inf Syst 42(1):147\u2013180","journal-title":"Knowl Inf Syst"},{"key":"957_CR35","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2022.110247","volume":"28","author":"BJ Ma","year":"2023","unstructured":"Ma BJ, Pereira JLJ, Oliva D, Liu S, Kuo YH (2023) Manta ray foraging optimizer-based image segmentation with a two-strategy enhancement. Knowl Based Syst 28:110247","journal-title":"Knowl Based Syst"},{"key":"957_CR36","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1016\/j.ins.2013.08.059","volume":"261","author":"N Maci\u00e0","year":"2014","unstructured":"Maci\u00e0 N, Bernad\u00f3-Mansilla E (2014) Towards UCI+: a mindful repository design. Inf Sci 261:237\u2013262","journal-title":"Inf Sci"},{"key":"957_CR37","unstructured":"Matt PA, Ziegler R, Brajovic D, Roth M, Huber MF (2022) A nested genetic algorithm for explaining classification data sets with decision rules. arXiv preprint arXiv:2209.07575"},{"key":"957_CR38","doi-asserted-by":"publisher","DOI":"10.1162\/evco_a_00262","author":"MA Mu\u00f1oz","year":"2019","unstructured":"Mu\u00f1oz MA, Smith-Miles KA (2019) Generating new space-filling test instances for continuous black-box optimization. Evolut Comput. https:\/\/doi.org\/10.1162\/evco_a_00262","journal-title":"Evolut Comput"},{"issue":"3","key":"957_CR39","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1162\/evco_a_00262","volume":"28","author":"MA Mu\u00f1oz","year":"2020","unstructured":"Mu\u00f1oz MA, Smith-Miles K (2020) Generating new space-filling test instances for continuous black-box optimization. Evol Comput 28(3):379\u2013404","journal-title":"Evol Comput"},{"issue":"1","key":"957_CR40","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/s10994-017-5629-5","volume":"107","author":"MA Munoz","year":"2018","unstructured":"Munoz MA, Villanova L, Baatar D, Smith-Miles K (2018) Instance spaces for machine learning classification. Mach Learn 107(1):109\u2013147","journal-title":"Mach Learn"},{"issue":"2","key":"957_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3436893","volume":"15","author":"MA Mu\u00f1oz","year":"2021","unstructured":"Mu\u00f1oz MA, Yan T, Leal MR, Smith-Miles K, Lorena AC, Pappa GL, Rodrigues RM (2021) An instance space analysis of regression problems. ACM Trans Knowl Discov Data (TKDD) 15(2):1\u201325","journal-title":"ACM Trans Knowl Discov Data (TKDD)"},{"key":"957_CR42","doi-asserted-by":"crossref","unstructured":"Nascimento AI, Bastos-Filho CJ (2010) A particle swarm optimization based approach for the maximum coverage problem in cellular base stations positioning. In: 2010 10th international conference on hybrid intelligent systems, IEEE, pp 91\u201396","DOI":"10.1109\/HIS.2010.5600087"},{"issue":"1","key":"957_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13040-017-0154-4","volume":"10","author":"RS Olson","year":"2017","unstructured":"Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ, Moore JH (2017) PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min 10(1):1\u201313","journal-title":"BioData Min"},{"issue":"1\u201340","key":"957_CR44","first-page":"12","volume":"196","author":"A Orriols-Puig","year":"2010","unstructured":"Orriols-Puig A, Macia N, Ho TK (2010) Documentation for the data complexity library in C++. Universitat Ramon Llull La Salle 196(1\u201340):12","journal-title":"Universitat Ramon Llull La Salle"},{"issue":"6","key":"957_CR45","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3533378","volume":"55","author":"A Paleyes","year":"2022","unstructured":"Paleyes A, Urma RG, Lawrence ND (2022) Challenges in deploying machine learning: a survey of case studies. ACM Comput Surv 55(6):1\u201329","journal-title":"ACM Comput Surv"},{"issue":"2","key":"957_CR46","doi-asserted-by":"publisher","first-page":"3336","DOI":"10.1016\/j.eswa.2008.01.039","volume":"36","author":"HS Park","year":"2009","unstructured":"Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Syst Appl 36(2):3336\u20133341","journal-title":"Expert Syst Appl"},{"key":"957_CR47","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2020.104055","volume":"97","author":"JLJ Pereira","year":"2021","unstructured":"Pereira JLJ, Francisco MB, da Cunha Jr SS, Gomes GF (2021a) A powerful Lichtenberg optimization algorithm: a damage identification case study. Eng Appl Artif Intell 97:104055","journal-title":"Eng Appl Artif Intell"},{"key":"957_CR48","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.114522","volume":"170","author":"JLJ Pereira","year":"2021","unstructured":"Pereira JLJ, Francisco MB, Diniz CA, Oliver GA, Cunha SS Jr, Gomes GF (2021b) Lichtenberg algorithm: a novel hybrid physics-based meta-heuristic for global optimization. Expert Syst Appl 170:114522","journal-title":"Expert Syst Appl"},{"key":"957_CR49","doi-asserted-by":"publisher","DOI":"10.1007\/s11831-021-09663-x","author":"JLJ Pereira","year":"2021","unstructured":"Pereira JLJ, Oliver GA, Francisco MB, Cunha SS, Gomes GF (2021c) A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch Comput Methods Eng. https:\/\/doi.org\/10.1007\/s11831-021-09663-x","journal-title":"Arch Comput Methods Eng"},{"key":"957_CR50","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2022.109466","volume":"180","author":"JLJ Pereira","year":"2022","unstructured":"Pereira JLJ, Francisco MB, de Oliveira LA, Chaves JAS, Cunha SS Jr, Gomes GF (2022a) Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection. Mech Syst Signal Process 180:109466","journal-title":"Mech Syst Signal Process"},{"key":"957_CR51","doi-asserted-by":"publisher","first-page":"7195","DOI":"10.1007\/s00500-022-07105-9","volume":"26","author":"JLJ Pereira","year":"2022","unstructured":"Pereira JLJ, Francisco MB, Ribeiro RF, Cunha SS, Gomes GF (2022b) Deep multiobjective design optimization of CFRP isogrid tubes using Lichtenberg algorithm. Soft Comput 26:7195\u20137209","journal-title":"Soft Comput"},{"key":"957_CR52","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.115939","volume":"187","author":"JLJ Pereira","year":"2022","unstructured":"Pereira JLJ, Oliver GA, Francisco MB, Cunha SS Jr, Gomes GF (2022c) Multi-objective Lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems. Expert Syst Appl 187:115939","journal-title":"Expert Syst Appl"},{"issue":"2","key":"957_CR53","first-page":"219","volume":"30","author":"O Rahmani","year":"2018","unstructured":"Rahmani O, Naderi B, Mohammadi M, Koupaei MN (2018) A novel genetic algorithm for the maximum coverage problem in the three-level supply chain network. Int J Ind Syst Eng 30(2):219\u2013236","journal-title":"Int J Ind Syst Eng"},{"key":"957_CR54","doi-asserted-by":"crossref","unstructured":"Ristoski P, Vries GKDd, Paulheim H (2016) A collection of benchmark datasets for systematic evaluations of machine learning on the semantic web. In: International semantic web conference. Springer, pp 186\u2013194","DOI":"10.1007\/978-3-319-46547-0_20"},{"key":"957_CR55","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.108101","volume":"240","author":"A Rivolli","year":"2022","unstructured":"Rivolli A, Garcia LP, Soares C, Vanschoren J, de Carvalho AC (2022) Meta-features for meta-learning. Knowl-Based Syst 240:108101","journal-title":"Knowl-Based Syst"},{"key":"957_CR56","doi-asserted-by":"publisher","DOI":"10.1145\/3572895","author":"K Smith-Miles","year":"2023","unstructured":"Smith-Miles K, Mu\u00f1oz MA (2023) Instance space analysis for algorithm testing: methodology and software tools. ACM Comput Surv. https:\/\/doi.org\/10.1145\/3572895","journal-title":"ACM Comput Surv"},{"issue":"1","key":"957_CR57","doi-asserted-by":"publisher","first-page":"6","DOI":"10.1145\/1456650.1456656","volume":"41","author":"KA Smith-Miles","year":"2009","unstructured":"Smith-Miles KA (2009) Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput Surv (CSUR) 41(1):6","journal-title":"ACM Comput Surv (CSUR)"},{"key":"957_CR58","doi-asserted-by":"crossref","unstructured":"Soares C (2009) UCI++: improved support for algorithm selection using datasetoids. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 499\u2013506","DOI":"10.1007\/978-3-642-01307-2_46"},{"key":"957_CR59","unstructured":"Takamoto M, Praditia T, Leiteritz R, MacKinlay D, Alesiani F, Pfl\u00fcger D, Niepert M (2022) Pdebench: an extensive benchmark for scientific machine learning. arXiv preprint arXiv:2210.07182"},{"key":"957_CR60","doi-asserted-by":"crossref","unstructured":"Ta\u015fdemir A, Demirci S, Aslan S (2022) Performance investigation of immune plasma algorithm on solving wireless sensor deployment problem. In: 2022 9th international conference on electrical and electronics engineering (ICEEE), IEEE, pp 296\u2013300","DOI":"10.1109\/ICEEE55327.2022.9772539"},{"issue":"6","key":"957_CR61","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1038\/s42254-022-00441-7","volume":"4","author":"J Thiyagalingam","year":"2022","unstructured":"Thiyagalingam J, Shankar M, Fox G, Hey T (2022) Scientific machine learning benchmarks. Nat Rev Phys 4(6):413\u2013420","journal-title":"Nat Rev Phys"},{"key":"957_CR62","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2022.124249","volume":"254","author":"Z Tian","year":"2022","unstructured":"Tian Z, Wang J (2022) Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm. Energy 254:124249","journal-title":"Energy"},{"issue":"5","key":"957_CR63","doi-asserted-by":"publisher","first-page":"1712","DOI":"10.3390\/s22051712","volume":"22","author":"F Tossa","year":"2022","unstructured":"Tossa F, Abdou W, Ansari K, Ezin EC, Gouton P (2022) Area coverage maximization under connectivity constraint in wireless sensor networks. Sensors 22(5):1712","journal-title":"Sensors"},{"key":"957_CR64","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1007\/978-3-030-05318-5_2","volume-title":"Automated machine learning","author":"J Vanschoren","year":"2019","unstructured":"Vanschoren J (2019) Meta-learning. In: Hutter F, Kotthoff L, Vanschoren J (eds) Automated machine learning. Springer, Cham, pp 35\u201361"},{"issue":"2","key":"957_CR65","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1145\/2641190.2641198","volume":"15","author":"J Vanschoren","year":"2014","unstructured":"Vanschoren J, Van Rijn JN, Bischl B, Torgo L (2014) Openml: networked science in machine learning. ACM SIGKDD Explor Newsl 15(2):49\u201360","journal-title":"ACM SIGKDD Explor Newsl"},{"issue":"19","key":"957_CR66","doi-asserted-by":"publisher","first-page":"1400","DOI":"10.1103\/PhysRevLett.47.1400","volume":"47","author":"TA Witten Jr","year":"1981","unstructured":"Witten TA Jr, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19):1400","journal-title":"Phys Rev Lett"},{"key":"957_CR67","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1007\/978-1-4471-0123-9_3","volume-title":"Soft computing and industry","author":"DH Wolpert","year":"2002","unstructured":"Wolpert DH (2002) The supervised learning no-free-lunch theorems. In: Roy R, Koppen M, Ovaska S, Furuhashi T, Hoffmann F (eds) Soft computing and industry. Springer, London, pp 25\u201342"},{"key":"957_CR68","doi-asserted-by":"crossref","unstructured":"Xiao H, Cheng Y (2022) The image segmentation of Osmanthus fragrans based on optimization algorithms. In: 2022 4th international conference on advances in computer technology. Information science and communications (CTISC), IEEE, pp 1\u20135","DOI":"10.1109\/CTISC54888.2022.9849686"},{"key":"957_CR69","volume-title":"Nature-inspired optimization algorithms","author":"XS Yang","year":"2020","unstructured":"Yang XS (2020) Nature-inspired optimization algorithms. Academic Press, New York"},{"issue":"2","key":"957_CR70","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0087178","volume":"9","author":"S Yarrow","year":"2014","unstructured":"Yarrow S, Razak KA, Seitz AR, Seri\u00e8s P (2014) Detecting and quantifying topography in neural maps. PLoS ONE 9(2):e87178","journal-title":"PLoS ONE"},{"key":"957_CR71","doi-asserted-by":"publisher","DOI":"10.1016\/j.cor.2022.105826","volume":"144","author":"Y Yuan","year":"2022","unstructured":"Yuan Y, Tole K, Ni F, He K, Xiong Z, Liu J (2022) Adaptive simulated annealing with greedy search for the circle bin packing problem. Comput Oper Res 144:105826","journal-title":"Comput Oper Res"},{"issue":"1\u20132","key":"957_CR72","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1089\/10665270050081478","volume":"7","author":"Z Zhang","year":"2000","unstructured":"Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1\u20132):203\u2013214","journal-title":"J Comput Biol"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00957-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-023-00957-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00957-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,21]],"date-time":"2024-02-21T05:08:49Z","timestamp":1708492129000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-023-00957-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,20]]},"references-count":72,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2024,3]]}},"alternative-id":["957"],"URL":"https:\/\/doi.org\/10.1007\/s10618-023-00957-1","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,10,20]]},"assertion":[{"value":"9 February 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 July 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 October 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}