{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T04:29:30Z","timestamp":1729830570715,"version":"3.28.0"},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T00:00:00Z","timestamp":1690329600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T00:00:00Z","timestamp":1690329600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["CCF-1934568","IIS-1901527","IIS-2008173","CCF-1934568","DMS-1916125","DMS-2113605"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1007\/s10618-023-00945-5","type":"journal-article","created":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T13:02:49Z","timestamp":1690376569000},"page":"2192-2215","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Fast block-wise partitioning for extreme multi-label classification"],"prefix":"10.1007","volume":"37","author":[{"given":"Yuefeng","family":"Liang","sequence":"first","affiliation":[]},{"given":"Cho-Jui","family":"Hsieh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7067-405X","authenticated-orcid":false,"given":"Thomas C. M.","family":"Lee","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,26]]},"reference":[{"key":"945_CR1","doi-asserted-by":"crossref","unstructured":"Agrawal R, Gupta A, Prabhu Y, Varma M (2013) Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages. In: Proceedings of the 22nd international conference on World Wide Web, ACM, pp 13\u201324","DOI":"10.1145\/2488388.2488391"},{"key":"945_CR2","doi-asserted-by":"crossref","unstructured":"Babbar R, Sch\u00f6lkopf B (2017) Dismec: distributed sparse machines for extreme multi-label classification. In: Proceedings of the tenth ACM international conference on web search and data mining, ACM, pp 721\u2013729","DOI":"10.1145\/3018661.3018741"},{"key":"945_CR3","doi-asserted-by":"crossref","unstructured":"Babbar R, Sch\u00f6lkopf B (2019) Data scarcity, robustness and extreme multi-label classification. Mach Learn, 1\u201323","DOI":"10.1007\/s10994-019-05791-5"},{"key":"945_CR4","unstructured":"Bhatia K, Dahiya K, Jain H, Kar P, Mittal A, Prabhu Y, Varma M (2016) The extreme classification repository: multi-label datasets and code. URL http:\/\/manikvarma.org\/downloads\/XC\/XMLRepository.html"},{"key":"945_CR5","unstructured":"Bhatia K, Jain H, Kar P, Varma M, Jain P (2015) Sparse local embeddings for extreme multi-label classification. Adv Neural Inf Process Syst, 730\u2013738"},{"key":"945_CR6","doi-asserted-by":"crossref","unstructured":"Chang W-C, Jiang D, Yu H-F, Teo CH, Zhang J, Zhong K, Kolluri K, Hu Q, Shandilya N, Ievgrafov V et\u00a0al (2021) Extreme multi-label learning for semantic matching in product search. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, 2643\u20132651","DOI":"10.1145\/3447548.3467092"},{"key":"945_CR7","doi-asserted-by":"crossref","unstructured":"Chang W-C, Yu H-F, Zhong K, Yang Y, Dhillon IS (2020) Taming pretrained transformers for extreme multi-label text classification. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 3163\u20133171","DOI":"10.1145\/3394486.3403368"},{"key":"945_CR8","first-page":"265","volume":"2","author":"K Crammer","year":"2001","unstructured":"Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2:265\u2013292","journal-title":"J Mach Learn Res"},{"key":"945_CR9","unstructured":"Dahiya K, Agarwal A, Saini D, Gururaj K, Jiao J, Singh A, Agarwal S, Kar P, Varma M (2021a) Siamesexml: siamese networks meet extreme classifiers with 100m labels. In: International conference on machine learning, PMLR, pp 2330\u20132340"},{"key":"945_CR10","doi-asserted-by":"crossref","unstructured":"Dahiya K, Saini D, Mittal A, Shaw A, Dave K, Soni A, Jain H, Agarwal S, Varma M (2021b) Deepxml: A deep extreme multi-label learning framework applied to short text documents. In: Proceedings of the 14th ACM international conference on web search and data mining, pp 31\u201339","DOI":"10.1145\/3437963.3441810"},{"key":"945_CR11","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1007\/BF01890115","volume":"1","author":"WH Day","year":"1984","unstructured":"Day WH, Edelsbrunner H (1984) Efficient algorithms for agglomerative hierarchical clustering methods. J Classif 1:7\u201324","journal-title":"J Classif"},{"key":"945_CR12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B (Methodological) 39:1\u201322","journal-title":"J R Stat Soc Ser B (Methodological)"},{"key":"945_CR13","doi-asserted-by":"crossref","unstructured":"Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE Conference on, IEEE, pp 248\u2013255","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"945_CR14","unstructured":"Evron I, Moroshko E, Crammer K (2018) Efficient loss-based decoding on graphs for extreme classification. Adv Neural Inf Process Syst, 31"},{"key":"945_CR15","first-page":"1871","volume":"9","author":"R-E Fan","year":"2008","unstructured":"Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) Liblinear: a library for large linear classification. J Mach Learn Resarch 9:1871\u20131874","journal-title":"J Mach Learn Resarch"},{"key":"945_CR16","first-page":"3747","volume":"33","author":"V Gupta","year":"2019","unstructured":"Gupta V, Wadbude R, Natarajan N, Karnick H, Jain P, Rai P (2019) Distributional semantics meets multi-label learning. Proc AAAI Conf Artif Intell 33:3747\u20133754","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"945_CR17","unstructured":"Hsu DJ, Kakade SM, Langford J, Zhang T (2009) Multi-label prediction via compressed sensing. In: Advances in neural information processing systems, pp 772\u2013780"},{"volume-title":"Algorithms for clustering data","year":"1988","author":"AK Jain","key":"945_CR18","unstructured":"Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc"},{"key":"945_CR19","doi-asserted-by":"crossref","unstructured":"Jain H, Balasubramanian V, Chunduri B, Varma M (2019) Slice: scalable linear extreme classifiers trained on 100 million labels for related searches. In: Proceedings of the twelfth ACM international conference on web search and data mining, pp 528\u2013536","DOI":"10.1145\/3289600.3290979"},{"key":"945_CR20","doi-asserted-by":"crossref","unstructured":"Jain H, Prabhu Y, Varma M (2016) Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 935\u2013944","DOI":"10.1145\/2939672.2939756"},{"key":"945_CR21","doi-asserted-by":"crossref","unstructured":"Jalan A, Kar P (2019) Accelerating extreme classification via adaptive feature agglomeration. In: Proceedings of the 28th international joint conference on artificial intelligence, pp 2600\u20132606","DOI":"10.24963\/ijcai.2019\/361"},{"key":"945_CR22","unstructured":"Jasinska K, Dembczynski K, Busa-Fekete R, Pfannschmidt K, Klerx T, Hullermeier E (2016) Extreme f-measure maximization using sparse probability estimates. In: International conference on machine learning, pp 1435\u20131444"},{"key":"945_CR23","doi-asserted-by":"crossref","unstructured":"Jiang T, Wang D, Sun L, Yang H, Zhao Z, Zhuang F (2021) Lightxml: transformer with dynamic negative sampling for high-performance extreme multi-label text classification. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 7987\u20137994","DOI":"10.1609\/aaai.v35i9.16974"},{"key":"945_CR24","doi-asserted-by":"crossref","unstructured":"Khandagale S, Xiao H, Babbar R (2019) Bonsai-diverse and shallow trees for extreme multi-label classification. arXiv preprint arXiv:1904.08249","DOI":"10.1007\/s10994-020-05888-2"},{"key":"945_CR25","doi-asserted-by":"publisher","first-page":"2099","DOI":"10.1007\/s10994-020-05888-2","volume":"109","author":"S Khandagale","year":"2020","unstructured":"Khandagale S, Xiao H, Babbar R (2020) Bonsai: diverse and shallow trees for extreme multi-label classification. Mach Learn 109:2099\u20132119","journal-title":"Mach Learn"},{"key":"945_CR26","doi-asserted-by":"crossref","unstructured":"Liu J, Chang W-C, Wu Y, Yang Y (2017) Deep learning for extreme multi-label text classification. In Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, ACM, pp 115\u2013124","DOI":"10.1145\/3077136.3080834"},{"key":"945_CR27","doi-asserted-by":"crossref","unstructured":"McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In Proceedings of the 7th ACM conference on recommender systems, ACM, pp 165\u2013172","DOI":"10.1145\/2507157.2507163"},{"key":"945_CR28","doi-asserted-by":"crossref","unstructured":"Mittal A, Dahiya K, Agrawal S, Saini D, Agarwal S, Kar P, Varma M (2021) Decaf: deep extreme classification with label features. In Proceedings of the 14th ACM international conference on web search and data mining, pp 49\u201357","DOI":"10.1145\/3437963.3441807"},{"key":"945_CR29","doi-asserted-by":"crossref","unstructured":"Mittal A, Dahiya K, Malani S, Ramaswamy J, Kuruvilla S, Ajmera J, Chang K-h, Agarwal S, Kar P, Varma M (2022) Multi-modal extreme classification. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 12393\u201312402","DOI":"10.1109\/CVPR52688.2022.01207"},{"key":"945_CR30","doi-asserted-by":"crossref","unstructured":"Nasierding G, Tsoumakas G, Kouzani AZ (2009) Clustering based multi-label classification for image annotation and retrieval. In: 2009 IEEE international conference on systems, man and cybernetics SMC , IEEE, pp 4514\u20134519","DOI":"10.1109\/ICSMC.2009.5346902"},{"key":"945_CR31","unstructured":"Niculescu-Mizil A, Abbasnejad E (2017) Label filters for large scale multilabel classification. In: Artificial intelligence and statistics, pp 1448\u20131457"},{"key":"945_CR32","doi-asserted-by":"publisher","first-page":"965","DOI":"10.1007\/s10994-021-05952-5","volume":"110","author":"A Panos","year":"2021","unstructured":"Panos A, Dellaportas P, Titsias MK (2021) Large scale multi-label learning using gaussian processes. Mach Learn 110:965\u2013987","journal-title":"Mach Learn"},{"key":"945_CR33","doi-asserted-by":"crossref","unstructured":"Partalas I, Kosmopoulos A, Baskiotis N, Artieres T, Paliouras G, Gaussier E, Androutsopoulos I, Amini M-R, Galinari P (2015) Lshtc: A benchmark for large-scale text classification. arXiv preprint arXiv:1503.08581","DOI":"10.1145\/2556195.2556208"},{"key":"945_CR34","doi-asserted-by":"crossref","unstructured":"Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: partitioned label trees for extreme classification with application to dynamic search advertising. In: Proceedings of the 2018 world wide web conference, International world wide web conferences steering committee, pp 993\u20131002","DOI":"10.1145\/3178876.3185998"},{"key":"945_CR35","doi-asserted-by":"crossref","unstructured":"Prabhu Y, Varma M (2014) Fastxml: a fast, accurate and stable tree-classifier for extreme multi-label learning. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 263\u2013272","DOI":"10.1145\/2623330.2623651"},{"key":"945_CR36","doi-asserted-by":"crossref","unstructured":"Qaraei M, Schultheis E, Gupta P, Babbar R (2021) Convex surrogates for unbiased loss functions in extreme classification with missing labels. In: Proceedings of the web conference, vol 2021, pp 3711\u20133720","DOI":"10.1145\/3442381.3450139"},{"key":"945_CR37","unstructured":"Si S, Zhang H, Keerthi SS, Mahajan D, Dhillon IS, Hsieh C-J (2017) Gradient boosted decision trees for high dimensional sparse output. In: International conference on machine learning, pp 3182\u20133190"},{"key":"945_CR38","unstructured":"Siblini W, Kuntz P, Meyer F (2018) Craftml, an efficient clustering-based random forest for extreme multi-label learning"},{"key":"945_CR39","doi-asserted-by":"crossref","unstructured":"Snoek CG, Worring M, Van\u00a0Gemert JC, Geusebroek J-M, Smeulders AW (2006) The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th ACM international conference on multimedia, ACM, pp 421\u2013430","DOI":"10.1145\/1180639.1180727"},{"key":"945_CR40","doi-asserted-by":"crossref","unstructured":"Tagami Y (2017) Annexml: Approximate nearest neighbor search for extreme multi-label classification. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 455\u2013464","DOI":"10.1145\/3097983.3097987"},{"key":"945_CR41","doi-asserted-by":"crossref","unstructured":"Wei T, Tu W-W, Li Y-F, Yang G-P (2021) Towards robust prediction on tail labels. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 1812\u20131820","DOI":"10.1145\/3447548.3467223"},{"key":"945_CR42","unstructured":"Weston J, Makadia A, Yee H (2013) Label partitioning for sublinear ranking. In: International conference on machine learning, pp 181\u2013189"},{"key":"945_CR43","unstructured":"Wetzker R, Zimmermann C, Bauckhage C (2008) Analyzing social bookmarking systems: a del. icio. us cookbook. In: Proceedings of the ECAI 2008 mining social data workshop, pp 26\u201330"},{"key":"945_CR44","unstructured":"Wydmuch M, Jasinska K, Kuznetsov M, Busa-Fekete R, Dembczynski K (2018) A no-regret generalization of hierarchical softmax to extreme multi-label classification. In: Advances in neural information processing systems, pp 6355\u20136366"},{"key":"945_CR45","doi-asserted-by":"crossref","unstructured":"Yen IE, Huang X, Dai W, Ravikumar P, Dhillon I, Xing E (2017) Ppdsparse: a parallel primal-dual sparse method for extreme classification. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 545\u2013553","DOI":"10.1145\/3097983.3098083"},{"key":"945_CR46","doi-asserted-by":"crossref","unstructured":"Yen I E-H, Huang X, Ravikumar P, Zhong K, Dhillon I (2016) Pd-sparse: a primal and dual sparse approach to extreme multiclass and multilabel classification. In: International conference on machine learning, pp 3069\u20133077","DOI":"10.1145\/3097983.3098083"},{"key":"945_CR47","unstructured":"You R, Dai S, Zhang Z, Mamitsuka H, Zhu S (2018) Attentionxml: extreme multi-label text classification with multi-label attention based recurrent neural networks. arXiv preprint arXiv:1811.01727"},{"key":"945_CR48","unstructured":"Yu H-F, Jain P, Kar P, Dhillon I (2014) Large-scale multi-label learning with missing labels. In: International conference on machine learning, pp 593\u2013601"},{"key":"945_CR49","unstructured":"Zubiaga A (2012) Enhancing navigation on wikipedia with social tags. arXiv preprint arXiv:1202.5469"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00945-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-023-00945-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00945-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T02:45:32Z","timestamp":1729824332000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-023-00945-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,26]]},"references-count":49,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2023,11]]}},"alternative-id":["945"],"URL":"https:\/\/doi.org\/10.1007\/s10618-023-00945-5","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2023,7,26]]},"assertion":[{"value":"22 June 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 April 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 July 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors do not have any conflicts of interest\/competing interests to declare.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}