{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T22:40:02Z","timestamp":1729377602315,"version":"3.27.0"},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T00:00:00Z","timestamp":1683244800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T00:00:00Z","timestamp":1683244800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1007\/s10618-023-00929-5","type":"journal-article","created":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T18:01:51Z","timestamp":1683309711000},"page":"1441-1472","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A spatiotemporal deep neural network for fine-grained multi-horizon wind prediction"],"prefix":"10.1007","volume":"37","author":[{"given":"Fanling","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8257-693X","authenticated-orcid":false,"given":"Yangdong","family":"Deng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,5]]},"reference":[{"issue":"7567","key":"929_CR1","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1038\/nature14956","volume":"525","author":"P Bauer","year":"2015","unstructured":"Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47\u201355","journal-title":"Nature"},{"issue":"4","key":"929_CR2","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1002\/we.2029","volume":"20","author":"L Cavalcante","year":"2017","unstructured":"Cavalcante L, Bessa R, Reis M, Browell J (2017) Lasso vector autoregression structures for very short-term wind power forecasting. Wind Energy 20(4):657\u2013675","journal-title":"Wind Energy"},{"issue":"3","key":"929_CR3","doi-asserted-by":"publisher","first-page":"698","DOI":"10.1007\/s10618-018-0605-7","volume":"33","author":"M Ceci","year":"2019","unstructured":"Ceci M, Corizzo R, Malerba D, Rashkovska A (2019) Spatial autocorrelation and entropy for renewable energy forecasting. Data Min Knowl Discov 33(3):698\u2013729","journal-title":"Data Min Knowl Discov"},{"key":"929_CR4","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1016\/j.renene.2017.02.014","volume":"107","author":"WY Cheng","year":"2017","unstructured":"Cheng WY, Liu Y, Bourgeois AJ, Wu Y, Haupt SE (2017) Short-term wind forecast of a data assimilation\/weather forecasting system with wind turbine anemometer measurement assimilation. Renewab Energy 107:340\u2013351","journal-title":"Renewab Energy"},{"key":"929_CR5","doi-asserted-by":"publisher","first-page":"701","DOI":"10.1016\/j.ins.2020.08.003","volume":"546","author":"R Corizzo","year":"2021","unstructured":"Corizzo R, Ceci M, Fanaee-T H, Gama J (2021) Multi-aspect renewable energy forecasting. Inf Sci 546:701\u2013722","journal-title":"Inf Sci"},{"issue":"2","key":"929_CR6","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1109\/TEC.2003.821865","volume":"19","author":"IG Damousis","year":"2004","unstructured":"Damousis IG, Alexiadis MC, Theocharis JB, Dokopoulos PS (2004) A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 19(2):352\u2013361","journal-title":"IEEE Trans Energy Convers"},{"issue":"4","key":"929_CR7","doi-asserted-by":"publisher","first-page":"1405","DOI":"10.1016\/j.apenergy.2010.10.031","volume":"88","author":"E Erdem","year":"2011","unstructured":"Erdem E, Shi J (2011) Arma based approaches for forecasting the tuple of wind speed and direction. Appl Energy 88(4):1405\u20131414","journal-title":"Appl Energy"},{"key":"929_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2020.115034","volume":"269","author":"AA Ezzat","year":"2020","unstructured":"Ezzat AA (2020) Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations. Appl Energy 269:115034","journal-title":"Appl Energy"},{"key":"929_CR9","doi-asserted-by":"crossref","unstructured":"Fan C, Zhang Y, Pan Y, Li X, Zhang C, Yuan R, Wu D, Wang W, Pei J, Huang H (2019) Multi-horizon time series forecasting with temporal attention learning. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2527\u20132535","DOI":"10.1145\/3292500.3330662"},{"key":"929_CR10","unstructured":"Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, pp 315\u2013323"},{"key":"929_CR11","doi-asserted-by":"publisher","first-page":"106636","DOI":"10.1016\/j.epsr.2020.106636","volume":"190","author":"C Gon\u00e7alves","year":"2021","unstructured":"Gon\u00e7alves C, Cavalcante L, Brito M, Bessa RJ (2021) Forecasting conditional extreme quantiles for wind energy. Electric Power Syst Res 190:106636","journal-title":"Electric Power Syst Res"},{"key":"929_CR12","doi-asserted-by":"crossref","unstructured":"Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, Ieee, pp 6645\u20136649","DOI":"10.1109\/ICASSP.2013.6638947"},{"issue":"621C","key":"929_CR13","doi-asserted-by":"publisher","first-page":"2925","DOI":"10.1256\/qj.05.235","volume":"132","author":"EP Grimit","year":"2006","unstructured":"Grimit EP, Gneiting T, Berrocal VJ, Johnson NA (2006) The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quart J R Meteorol Soc 132(621C):2925\u20132942","journal-title":"Quart J R Meteorol Soc"},{"key":"929_CR14","doi-asserted-by":"crossref","unstructured":"Grover A, Kapoor A, Horvitz E (2015) A deep hybrid model for weather forecasting. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 379\u2013386","DOI":"10.1145\/2783258.2783275"},{"key":"929_CR15","doi-asserted-by":"crossref","unstructured":"Guo T, Bifet A, Antulov-Fantulin N (2018) Bitcoin volatility forecasting with a glimpse into buy and sell orders. In: 2018 IEEE international conference on data mining (ICDM), IEEE, pp 989\u2013994","DOI":"10.1109\/ICDM.2018.00123"},{"key":"929_CR16","doi-asserted-by":"crossref","unstructured":"Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1725\u20131732","DOI":"10.1109\/CVPR.2014.223"},{"issue":"2","key":"929_CR17","doi-asserted-by":"publisher","first-page":"670","DOI":"10.1109\/TSTE.2018.2844102","volume":"10","author":"M Khodayar","year":"2018","unstructured":"Khodayar M, Wang J (2018) Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans Sustainable Energy 10(2):670\u2013681","journal-title":"IEEE Trans Sustainable Energy"},{"key":"929_CR18","unstructured":"Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980"},{"key":"929_CR19","unstructured":"Kipf T, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations. arXiv:abs\/1609.02907"},{"issue":"2","key":"929_CR20","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1016\/j.neunet.2006.01.002","volume":"19","author":"VM Krasnopolsky","year":"2006","unstructured":"Krasnopolsky VM, Fox-Rabinovitz MS (2006) Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Netw 19(2):122\u2013134","journal-title":"Neural Netw"},{"key":"929_CR21","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84\u201390","journal-title":"Commun ACM"},{"issue":"7553","key":"929_CR22","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436","journal-title":"Nature"},{"issue":"1","key":"929_CR23","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1080\/00031305.1975.10479105","volume":"29","author":"DW Marquardt","year":"1975","unstructured":"Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1):3\u201320","journal-title":"Am Stat"},{"key":"929_CR24","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1016\/j.enconman.2012.11.025","volume":"72","author":"N Masseran","year":"2013","unstructured":"Masseran N, Razali AM, Ibrahim K, Latif MT (2013) Fitting a mixture of von mises distributions in order to model data on wind direction in peninsular malaysia. Energy Convers Manage 72:94\u2013102","journal-title":"Energy Convers Manage"},{"issue":"1","key":"929_CR25","doi-asserted-by":"publisher","first-page":"126","DOI":"10.3390\/app9010126","volume":"9","author":"Q Qin","year":"2019","unstructured":"Qin Q, Lai X, Zou J (2019) Direct multistep wind speed forecasting using lstm neural network combining eemd and fuzzy entropy. Appl Sci 9(1):126","journal-title":"Appl Sci"},{"issue":"39","key":"929_CR26","doi-asserted-by":"publisher","first-page":"9684","DOI":"10.1073\/pnas.1810286115","volume":"115","author":"S Rasp","year":"2018","unstructured":"Rasp S, Pritchard MS, Gentine P (2018) Deep learning to represent subgrid processes in climate models. Proc Natl Acad Sci 115(39):9684\u20139689","journal-title":"Proc Natl Acad Sci"},{"issue":"6","key":"929_CR27","doi-asserted-by":"publisher","first-page":"1451","DOI":"10.1016\/j.renene.2008.10.017","volume":"34","author":"S Salcedo-Sanz","year":"2009","unstructured":"Salcedo-Sanz S, Perez-Bellido AM, Ortiz-Garc\u00eda EG, Portilla-Figueras A, Prieto L, Paredes D (2009) Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renewab Energy 34(6):1451\u20131457","journal-title":"Renewab Energy"},{"key":"929_CR28","unstructured":"Shi X, Chen Z, Wang H, Yeung DY, Wong WK, chun Woo W (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. In: International conference on neural information processing systems, pp 802\u2013810"},{"key":"929_CR29","unstructured":"Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, vol\u00a04"},{"issue":"1","key":"929_CR30","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1109\/TNNLS.2015.2411629","volume":"27","author":"SB Taieb","year":"2015","unstructured":"Taieb SB, Atiya AF (2015) A bias and variance analysis for multistep-ahead time series forecasting. IEEE Trans Neural Netw Learn Syst 27(1):62\u201376","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"929_CR31","doi-asserted-by":"crossref","unstructured":"Wang B, Lu J, Yan Z, Luo H, Li T, Zheng Y, Zhang G (2019) Deep uncertainty quantification: A machine learning approach for weather forecasting. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2087\u20132095","DOI":"10.1145\/3292500.3330704"},{"key":"929_CR32","doi-asserted-by":"publisher","first-page":"960","DOI":"10.1016\/j.rser.2016.01.114","volume":"60","author":"J Wang","year":"2016","unstructured":"Wang J, Song Y, Liu F, Hou R (2016) Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models. Renew Sustain Energy Rev 60:960\u2013981","journal-title":"Renew Sustain Energy Rev"},{"key":"929_CR33","unstructured":"Wen R, Torkkola K, Narayanaswamy B, Madeka D (2017) A multi-horizon quantile recurrent forecaster. Mach Learn"},{"key":"929_CR34","doi-asserted-by":"crossref","unstructured":"Wilson T, Tan PN, Luo L (2018) A low rank weighted graph convolutional approach to weather prediction. In: 2018 ieee international conference on data mining (ICDM), IEEE, pp 627\u2013636","DOI":"10.1109\/ICDM.2018.00078"},{"key":"929_CR35","doi-asserted-by":"publisher","first-page":"53168","DOI":"10.1109\/ACCESS.2018.2869981","volume":"6","author":"Y Zhang","year":"2018","unstructured":"Zhang Y, Chen B, Zhao Y, Pan G (2018) Wind speed prediction of ipso-bp neural network based on lorenz disturbance. IEEE Access 6:53168\u201353179","journal-title":"IEEE Access"},{"key":"929_CR36","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.enconman.2019.04.006","volume":"192","author":"Z Zhang","year":"2019","unstructured":"Zhang Z, Qin H, Liu Y, Wang Y, Yao L, Li Q, Li J, Pei S (2019) Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction. Energy Convers Manage 192:37\u201351","journal-title":"Energy Convers Manage"},{"issue":"9","key":"929_CR37","doi-asserted-by":"publisher","first-page":"3848","DOI":"10.1109\/TITS.2019.2935152","volume":"21","author":"L Zhao","year":"2019","unstructured":"Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019) T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst 21(9):3848\u20133858","journal-title":"IEEE Trans Intell Transp Syst"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00929-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-023-00929-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00929-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T22:12:28Z","timestamp":1729375948000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-023-00929-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,5]]},"references-count":37,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,7]]}},"alternative-id":["929"],"URL":"https:\/\/doi.org\/10.1007\/s10618-023-00929-5","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2023,5,5]]},"assertion":[{"value":"17 February 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 May 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}