{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T10:35:24Z","timestamp":1725964524434},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2023,4,16]],"date-time":"2023-04-16T00:00:00Z","timestamp":1681603200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,4,16]],"date-time":"2023-04-16T00:00:00Z","timestamp":1681603200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["DP210100072"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2023,9]]},"abstract":"Abstract<\/jats:title>Dynamic time warping (DTW<\/jats:italic>) is a popular time series distance measure that aligns the points in two series with one another. These alignments support warping of the time dimension to allow for processes that unfold at differing rates. The distance is the minimum sum of costs of the resulting alignments over any allowable warping of the time dimension. The cost of an alignment of two points is a function of the difference in the values of those points. The original cost function was the absolute value of this difference. Other cost functions have been proposed. A popular alternative is the square of the difference. However, to our knowledge, this is the first investigation of both the relative impacts of using different cost functions and the potential to tune cost functions to different time series classification tasks. We do so in this paper by using a tunable cost function $$\\lambda _{\\gamma }$$<\/jats:tex-math>\n \n \u03bb<\/mml:mi>\n \u03b3<\/mml:mi>\n <\/mml:msub>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> with parameter $$\\gamma $$<\/jats:tex-math>\n \u03b3<\/mml:mi>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>. We show that higher values of $$\\gamma $$<\/jats:tex-math>\n \u03b3<\/mml:mi>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> place greater weight on larger pairwise differences, while lower values place greater weight on smaller pairwise differences. We\u00a0demonstrate that training $$\\gamma $$<\/jats:tex-math>\n \u03b3<\/mml:mi>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> significantly improves the accuracy of both the $${ DTW }$$<\/jats:tex-math>\n \n DTW<\/mml:mi>\n <\/mml:mrow>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> nearest neighbor and Proximity Forest classifiers.\n<\/jats:p>","DOI":"10.1007\/s10618-023-00926-8","type":"journal-article","created":{"date-parts":[[2023,4,16]],"date-time":"2023-04-16T13:01:51Z","timestamp":1681650111000},"page":"2024-2045","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Parameterizing the cost function of dynamic time warping with application to time series classification"],"prefix":"10.1007","volume":"37","author":[{"given":"Matthieu","family":"Herrmann","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8377-3241","authenticated-orcid":false,"given":"Chang Wei","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Geoffrey I.","family":"Webb","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,16]]},"reference":[{"issue":"3","key":"926_CR1","doi-asserted-by":"publisher","first-page":"863","DOI":"10.1007\/s10618-021-00740-0","volume":"35","author":"S Alaee","year":"2021","unstructured":"Alaee S, Mercer R, Kamgar K, Keogh E (2021) Time series motifs discovery under DTW allows more robust discovery of conserved structure. Data Min Knowl Disc 35(3):863\u2013910","journal-title":"Data Min Knowl Disc"},{"key":"926_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108148","volume":"120","author":"K Bandara","year":"2021","unstructured":"Bandara K, Hewamalage H, Liu YH, Kang Y, Bergmeir C (2021) Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recogn 120:108148","journal-title":"Pattern Recogn"},{"key":"926_CR3","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1016\/j.jneumeth.2015.12.006","volume":"261","author":"Y Cao","year":"2016","unstructured":"Cao Y, Rakhilin N, Gordon PH, Shen X, Kan EC (2016) A real-time spike classification method based on dynamic time warping for extracellular enteric neural recording with large waveform variability. J Neurosci Methods 261:97\u2013109","journal-title":"J Neurosci Methods"},{"key":"926_CR4","doi-asserted-by":"crossref","unstructured":"Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: Proceedings 2004 VLDB conference, pp 792\u2013803","DOI":"10.1016\/B978-012088469-8.50070-X"},{"key":"926_CR5","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1016\/j.patcog.2016.01.011","volume":"55","author":"H Cheng","year":"2016","unstructured":"Cheng H, Dai Z, Liu Z, Zhao Y (2016) An image-to-class dynamic time warping approach for both 3d static and trajectory hand gesture recognition. Pattern Recogn 55:137\u2013147","journal-title":"Pattern Recogn"},{"key":"926_CR6","doi-asserted-by":"crossref","unstructured":"Dau HA, Keogh E, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Yanping, Hu B, Begum N, Bagnall A, Mueen A, Batista G, Hexagon-ML (2018) The UCR time series classification archive","DOI":"10.1109\/JAS.2019.1911747"},{"key":"926_CR7","doi-asserted-by":"crossref","unstructured":"Dau HA, Bagnall A, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Keogh E (2019) The UCR time series archive. arXiv:1810.07758 [cs, stat]","DOI":"10.1109\/JAS.2019.1911747"},{"key":"926_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107210","volume":"102","author":"H Deng","year":"2020","unstructured":"Deng H, Chen W, Shen Q, Ma AJ, Yuen PC, Feng G (2020) Invariant subspace learning for time series data based on dynamic time warping distance. Pattern Recogn 102:107210. https:\/\/doi.org\/10.1016\/j.patcog.2020.107210","journal-title":"Pattern Recogn"},{"key":"926_CR9","doi-asserted-by":"publisher","DOI":"10.1007\/s11081-022-09738-z","author":"D Deriso","year":"2022","unstructured":"Deriso D, Boyd S (2022) A general optimization framework for dynamic time warping. Optim Eng. https:\/\/doi.org\/10.1007\/s11081-022-09738-z","journal-title":"Optim Eng"},{"key":"926_CR10","doi-asserted-by":"crossref","unstructured":"Diab DM, AsSadhan B, Binsalleeh H, Lambotharan S, Kyriakopoulos KG, Ghafir I (2019) Anomaly detection using dynamic time warping. In: 2019 IEEE International conference on computational science and engineering (CSE) and IEEE international conference on embedded and ubiquitous computing (EUC). IEEE, pp 193\u2013198","DOI":"10.1109\/CSE\/EUC.2019.00045"},{"key":"926_CR11","doi-asserted-by":"publisher","first-page":"1936","DOI":"10.1007\/s10618-020-00710-y","volume":"34","author":"HI Fawaz","year":"2020","unstructured":"Fawaz HI, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, Webb GI, Idoumghar L, Muller PA, Petitjean F (2020) Inceptiontime: finding alexnet for time series classification. Data Min Knowl Discov 34:1936\u20131962. https:\/\/doi.org\/10.1007\/s10618-020-00710-y","journal-title":"Data Min Knowl Discov"},{"key":"926_CR12","unstructured":"Herrmann M, Webb GI (in press) Amercing: an intuitive and effective constraint for dynamic time warping. Pattern Recogn"},{"issue":"4","key":"926_CR13","doi-asserted-by":"publisher","first-page":"664","DOI":"10.1145\/322033.322044","volume":"24","author":"DS Hirschberg","year":"1977","unstructured":"Hirschberg DS (1977) Algorithms for the longest common subsequence problem. J ACM (JACM) 24(4):664\u2013675. https:\/\/doi.org\/10.1145\/322033.322044","journal-title":"J ACM (JACM)"},{"issue":"1","key":"926_CR14","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/TASSP.1975.1162641","volume":"23","author":"F Itakura","year":"1975","unstructured":"Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust Speech Signal Process 23(1):67\u201372. https:\/\/doi.org\/10.1109\/TASSP.1975.1162641","journal-title":"IEEE Trans Acoust Speech Signal Process"},{"issue":"9","key":"926_CR15","doi-asserted-by":"publisher","first-page":"2231","DOI":"10.1016\/j.patcog.2010.09.022","volume":"44","author":"YS Jeong","year":"2011","unstructured":"Jeong YS, Jeong MK, Omitaomu OA (2011) Weighted dynamic time warping for time series classification. Pattern Recogn 44(9):2231\u20132240. https:\/\/doi.org\/10.1016\/j.patcog.2010.09.022","journal-title":"Pattern Recogn"},{"issue":"3","key":"926_CR16","doi-asserted-by":"publisher","first-page":"358","DOI":"10.1007\/s10115-004-0154-9","volume":"7","author":"E Keogh","year":"2005","unstructured":"Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping. Knowl Inf Syst 7(3):358\u2013386","journal-title":"Knowl Inf Syst"},{"key":"926_CR17","doi-asserted-by":"publisher","unstructured":"Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM international conference on data mining, society for industrial and applied mathematics, pp 1\u201311. https:\/\/doi.org\/10.1137\/1.9781611972719.1","DOI":"10.1137\/1.9781611972719.1"},{"issue":"3","key":"926_CR18","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1007\/s10618-014-0361-2","volume":"29","author":"J Lines","year":"2015","unstructured":"Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min Knowl Disc 29(3):565\u2013592. https:\/\/doi.org\/10.1007\/s10618-014-0361-2","journal-title":"Data Min Knowl Disc"},{"key":"926_CR19","unstructured":"L\u00f6ning M, Bagnall A, Ganesh S, Kazakov V (2019) Sktime: a unified interface for machine learning with time series. arXiv:1909.07872"},{"issue":"3","key":"926_CR20","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1007\/s10618-019-00617-3","volume":"33","author":"B Lucas","year":"2019","unstructured":"Lucas B, Shifaz A, Pelletier C, O\u2019Neill L, Zaidi N, Goethals B, Petitjean F, Webb GI (2019) Proximity forest: an effective and scalable distance-based classifier for time series. Data Min Knowl Disc 33(3):607\u2013635. https:\/\/doi.org\/10.1007\/s10618-019-00617-3","journal-title":"Data Min Knowl Disc"},{"issue":"2","key":"926_CR21","doi-asserted-by":"publisher","first-page":"306","DOI":"10.1109\/TPAMI.2008.76","volume":"31","author":"PF Marteau","year":"2009","unstructured":"Marteau PF (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans Pattern Anal Mach Intell 31(2):306\u2013318. https:\/\/doi.org\/10.1109\/TPAMI.2008.76","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"11","key":"926_CR22","doi-asserted-by":"publisher","first-page":"3211","DOI":"10.1007\/s10994-021-06057-9","volume":"110","author":"M Middlehurst","year":"2021","unstructured":"Middlehurst M, Large J, Flynn M, Lines J, Bostrom A, Bagnall A (2021) HIVE-COTE 2.0: a new meta ensemble for time series classification. Mach Learn 110(11):3211\u20133243","journal-title":"Mach Learn"},{"key":"926_CR23","doi-asserted-by":"publisher","unstructured":"Mueen A, Keogh E (2016) Extracting optimal performance from dynamic time warping. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining\u2014KDD\u201916. ACM Press, pp 2129\u20132130. https:\/\/doi.org\/10.1145\/2939672.2945383","DOI":"10.1145\/2939672.2945383"},{"key":"926_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107699","volume":"112","author":"M Okawa","year":"2021","unstructured":"Okawa M (2021) Online signature verification using single-template matching with time-series averaging and gradient boosting. Pattern Recogn 112:107699","journal-title":"Pattern Recogn"},{"issue":"3","key":"926_CR25","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1016\/j.patcog.2010.09.013","volume":"44","author":"F Petitjean","year":"2011","unstructured":"Petitjean F, Ketterlin A, Gan\u00e7arski P (2011) A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn 44(3):678\u2013693","journal-title":"Pattern Recogn"},{"key":"926_CR26","doi-asserted-by":"crossref","unstructured":"Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proc. 18th ACM SIGKDD Int. Conf. knowledge discovery and data mining, pp 262\u2013270","DOI":"10.1145\/2339530.2339576"},{"key":"926_CR27","doi-asserted-by":"crossref","unstructured":"Ratanamahatana C, Keogh E (2004) Making time-series classification more accurate using learned constraints. In: SIAM SDM","DOI":"10.1137\/1.9781611972740.2"},{"issue":"9","key":"926_CR28","first-page":"483","volume":"27","author":"H Sakoe","year":"1971","unstructured":"Sakoe H, Chiba S (1971) Recognition of continuously spoken words based on time-normalization by dynamic programming. J Acoust Soc Jpn 27(9):483\u2013490","journal-title":"J Acoust Soc Jpn"},{"issue":"1","key":"926_CR29","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1109\/TASSP.1978.1163055","volume":"26","author":"H Sakoe","year":"1978","unstructured":"Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43\u201349. https:\/\/doi.org\/10.1109\/TASSP.1978.1163055","journal-title":"IEEE Trans Acoust Speech Signal Process"},{"issue":"3","key":"926_CR30","doi-asserted-by":"publisher","first-page":"742","DOI":"10.1007\/s10618-020-00679-8","volume":"34","author":"A Shifaz","year":"2020","unstructured":"Shifaz A, Pelletier C, Petitjean F, Webb GI (2020) TS-CHIEF: a scalable and accurate forest algorithm for time series classification. Data Min Knowl Disc 34(3):742\u2013775. https:\/\/doi.org\/10.1007\/s10618-020-00679-8","journal-title":"Data Min Knowl Disc"},{"issue":"4","key":"926_CR31","doi-asserted-by":"publisher","first-page":"988","DOI":"10.1007\/s10618-018-0557-y","volume":"32","author":"DF Silva","year":"2018","unstructured":"Silva DF, Giusti R, Keogh E, Batista GEAPA (2018) Speeding up similarity search under dynamic time warping by pruning unpromising alignments. Data Min Knowl Disc 32(4):988\u20131016. https:\/\/doi.org\/10.1007\/s10618-018-0557-y","journal-title":"Data Min Knowl Disc"},{"key":"926_CR32","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/j.pmcj.2017.06.002","volume":"40","author":"G Singh","year":"2017","unstructured":"Singh G, Bansal D, Sofat S, Aggarwal N (2017) Smart patrolling: an efficient road surface monitoring using smartphone sensors and crowdsourcing. Pervasive Mob Comput 40:71\u201388","journal-title":"Pervasive Mob Comput"},{"issue":"6","key":"926_CR33","doi-asserted-by":"publisher","first-page":"1425","DOI":"10.1109\/TKDE.2012.88","volume":"25","author":"A Stefan","year":"2013","unstructured":"Stefan A, Athitsos V, Das G (2013) The move-split-merge metric for time series. IEEE Trans Knowl Data Eng 25(6):1425\u20131438. https:\/\/doi.org\/10.1109\/TKDE.2012.88","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"926_CR34","doi-asserted-by":"crossref","unstructured":"Tan CW, Herrmann M, Forestier G, Webb GI, Petitjean F (2018) Efficient search of the best warping window for dynamic time warping. In: Proc. 2018 SIAM Int. Conf. data mining. SIAM, pp 225\u2013233","DOI":"10.1137\/1.9781611975321.26"},{"issue":"1","key":"926_CR35","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1007\/s10618-019-00663-x","volume":"34","author":"CW Tan","year":"2020","unstructured":"Tan CW, Petitjean F, Webb GI (2020) FastEE: fast ensembles of elastic distances for time series classification. Data Min Knowl Disc 34(1):231\u2013272. https:\/\/doi.org\/10.1007\/s10618-019-00663-x","journal-title":"Data Min Knowl Disc"},{"key":"926_CR36","doi-asserted-by":"publisher","unstructured":"Tan CW, Bergmeir C, Petitjean F, Webb GI (2021a) Time series extrinsic regression. Data Min Knowl Disc 35(3):1032\u20131060. https:\/\/doi.org\/10.1007\/s10618-021-00745-9","DOI":"10.1007\/s10618-021-00745-9"},{"key":"926_CR37","doi-asserted-by":"crossref","unstructured":"Tan CW, Herrmann M, Webb GI (2021b) Ultra fast warping window optimization for dynamic time warping. In: 2021 IEEE international conference on data mining. IEEE, pp 589\u2013598","DOI":"10.1109\/ICDM51629.2021.00070"},{"issue":"5","key":"926_CR38","doi-asserted-by":"publisher","first-page":"1623","DOI":"10.1007\/s10618-022-00844-1","volume":"36","author":"CW Tan","year":"2022","unstructured":"Tan CW, Dempster A, Bergmeir C, Webb GI (2022) Multirocket: multiple pooling operators and transformations for fast and effective time series classification. Data Min Knowl Disc 36(5):1623\u20131646","journal-title":"Data Min Knowl Disc"},{"key":"926_CR39","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781107325845","volume-title":"Minkowski geometry","author":"AC Thompson","year":"1996","unstructured":"Thompson AC, Thompson AC (1996) Minkowski geometry. Cambridge University Press, Cambridge"},{"issue":"1","key":"926_CR40","doi-asserted-by":"publisher","first-page":"681","DOI":"10.1007\/s10586-017-0977-2","volume":"21","author":"R Varatharajan","year":"2018","unstructured":"Varatharajan R, Manogaran G, Priyan MK, Sundarasekar R (2018) Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust Comput 21(1):681\u2013690","journal-title":"Clust Comput"},{"key":"926_CR41","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.patcog.2016.03.022","volume":"57","author":"Z Yasseen","year":"2016","unstructured":"Yasseen Z, Verroust-Blondet A, Nasri A (2016) Shape matching by part alignment using extended chordal axis transform. Pattern Recogn 57:115\u2013135","journal-title":"Pattern Recogn"},{"key":"926_CR42","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1016\/j.patcog.2017.09.020","volume":"74","author":"J Zhao","year":"2018","unstructured":"Zhao J, Itti L (2018) shapeDTW: Shape dynamic time warping. Pattern Recogn 74:171\u2013184. https:\/\/doi.org\/10.1016\/j.patcog.2017.09.020","journal-title":"Pattern Recogn"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00926-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-023-00926-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00926-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,19]],"date-time":"2023-08-19T13:12:44Z","timestamp":1692450764000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-023-00926-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,16]]},"references-count":42,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["926"],"URL":"https:\/\/doi.org\/10.1007\/s10618-023-00926-8","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4,16]]},"assertion":[{"value":"3 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 April 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}