{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,22]],"date-time":"2024-03-22T13:49:37Z","timestamp":1711115377596},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T00:00:00Z","timestamp":1676332800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T00:00:00Z","timestamp":1676332800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100016883","name":"Getulio Vargas Foundation","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100016883","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1007\/s10618-023-00922-y","type":"journal-article","created":{"date-parts":[[2023,2,17]],"date-time":"2023-02-17T05:48:08Z","timestamp":1676612888000},"page":"1930-1958","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Enforcing fairness using ensemble of diverse Pareto-optimal models"],"prefix":"10.1007","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1956-5418","authenticated-orcid":false,"given":"Vit\u00f3ria","family":"Guardieiro","sequence":"first","affiliation":[]},{"given":"Marcos M.","family":"Raimundo","sequence":"additional","affiliation":[]},{"given":"Jorge","family":"Poco","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,14]]},"reference":[{"key":"922_CR1","first-page":"169","volume":"1","author":"H Abdi","year":"2010","unstructured":"Abdi H (2010) Coefficient of variation. Encycl Res Design 1:169\u2013171","journal-title":"Encycl Res Design"},{"key":"922_CR2","doi-asserted-by":"crossref","unstructured":"Abebe SA, Lucchese C, Orlando S (2022) Eifffel: enforcing fairness in forests by flipping leaves. In: Proceedings of the 37th ACM\/SIGAPP symposium on applied computing, pp. 429\u2013436","DOI":"10.1145\/3477314.3507319"},{"key":"922_CR3","unstructured":"Agarwal A, Beygelzimer A, Dudik M, Langford J, Wallach H (2018) A reductions approach to fair classification. In: Dy J, Krause A (eds.) Proceedings of the 35th international conference on machine learning, Proceedings of machine learning research, vol.\u00a080, pp. 60\u201369. PMLR. http:\/\/proceedings.mlr.press\/v80\/agarwal18a.html"},{"key":"922_CR4","unstructured":"Angwin J, Larson J, Mattu S, Kirchner L (2016) Compas recidivism risk score data and analysis. https:\/\/github.com\/propublica\/compas-analysis\/"},{"key":"922_CR5","unstructured":"Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias. https:\/\/www.propublica.org\/article\/machine-bias-risk-assessments-in-criminal-sentencing"},{"issue":"4\/5","key":"922_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1147\/JRD.2019.2942287","volume":"63","author":"RK Bellamy","year":"2019","unstructured":"Bellamy RK, Dey K, Hind M, Hoffman SC, Houde S, Kannan K, Lohia P, Martino J, Mehta S, Mojsilovi\u0107 A et al (2019) Ai fairness 360: an extensible toolkit for detecting and mitigating algorithmic bias. IBM J Res Dev 63(4\/5):1\u20134","journal-title":"IBM J Res Dev"},{"key":"922_CR7","unstructured":"Berk R, Heidari H, Jabbari S, Joseph M, Kearns M, Morgenstern J, Neel S, Roth A (2017) A convex framework for fair regression. arXiv preprint arXiv:1706.02409"},{"issue":"3","key":"922_CR8","doi-asserted-by":"publisher","first-page":"1653","DOI":"10.1016\/j.ejor.2006.08.008","volume":"181","author":"N Beume","year":"2007","unstructured":"Beume N, Naujoks B, Emmerich M (2007) Sms-emoa: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653\u20131669. https:\/\/doi.org\/10.1016\/j.ejor.2006.08.008","journal-title":"Eur J Oper Res"},{"key":"922_CR9","doi-asserted-by":"crossref","unstructured":"Bhargava V, Couceiro M, Napoli A (2020) Limeout: an ensemble approach to improve process fairness. In: Joint European conference on machine learning and knowledge discovery in databases, pp. 475\u2013491. Springer","DOI":"10.1007\/978-3-030-65965-3_32"},{"key":"922_CR10","doi-asserted-by":"crossref","unstructured":"Bhaskaruni D, Hu H, Lan C (2019) Improving prediction fairness via model ensemble. In: 2019 IEEE 31st International conference on tools with artificial intelligence (ICTAI), pp. 1810\u20131814. IEEE","DOI":"10.1109\/ICTAI.2019.00273"},{"key":"922_CR11","doi-asserted-by":"crossref","unstructured":"Binns R (2020) On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 conference on fairness, accountability, and transparency, pp. 514\u2013524","DOI":"10.1145\/3351095.3372864"},{"key":"922_CR12","doi-asserted-by":"crossref","unstructured":"Calders T, Kamiran F, Pechenizkiy M (2009) Building classifiers with independency constraints. In: 2009 IEEE International conference on data mining workshops, pp. 13\u201318. IEEE","DOI":"10.1109\/ICDMW.2009.83"},{"key":"922_CR13","doi-asserted-by":"crossref","unstructured":"Chen Z, Zhang J, Sarro F, Harman M (2022) Maat: a novel ensemble approach to addressing fairness and performance bugs for machine learning software. In: The ACM joint european software engineering conference and symposium on the foundations of software engineering (ESEC\/FSE)","DOI":"10.1145\/3540250.3549093"},{"key":"922_CR14","unstructured":"Cohon JL (2004) Multiobjective programming and planning, vol. 140. Courier Corporation"},{"issue":"5","key":"922_CR15","doi-asserted-by":"publisher","first-page":"1001","DOI":"10.1029\/WR015i005p01001","volume":"15","author":"JL Cohon","year":"1979","unstructured":"Cohon JL, Church RL, Sheer DP (1979) Generating multiobjective trade-offs: an algorithm for bicriterion problems. Water Resour Res 15(5):1001\u20131010","journal-title":"Water Resour Res"},{"key":"922_CR16","unstructured":"Corbett-Davies S, Goel S (2018) The measure and mismeasure of fairness: a critical review of fair machine learning. arXiv preprint arXiv:1808.00023"},{"key":"922_CR17","unstructured":"Cruz AF, Saleiro P, Bel\u00e9m C, Soares C, Bizarro P (2020) A bandit-based algorithm for fairness-aware hyperparameter optimization. arXiv preprint arXiv:2010.03665"},{"issue":"2","key":"922_CR18","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1089\/big.2016.0048","volume":"5","author":"B d\u2019Alessandro","year":"2017","unstructured":"d\u2019Alessandro B, O\u2019Neil C, LaGatta T (2017) Conscientious classification: A data scientist\u2019s guide to discrimination-aware classification. Big Data 5(2):120\u2013134","journal-title":"Big Data"},{"key":"922_CR19","unstructured":"Dastin J (2018) Amazon scraps secret ai recruiting tool that showed bias against women. https:\/\/www.reuters.com\/article\/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G"},{"key":"922_CR20","unstructured":"Dieterich W, Mendoza C, Brennan T (2016) Compas risk scales: demonstrating accuracy equity and predictive parity. Northpoint Inc 7(74), 1"},{"issue":"1","key":"922_CR21","doi-asserted-by":"publisher","first-page":"eaao5580","DOI":"10.1126\/sciadv.aao5580","volume":"4","author":"J Dressel","year":"2018","unstructured":"Dressel J, Farid H (2018) The accuracy, fairness, and limits of predicting recidivism. Sci Adv 4(1):eaao5580","journal-title":"Sci Adv"},{"key":"922_CR22","unstructured":"Dua D, Graff C (2017) UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml"},{"key":"922_CR23","unstructured":"Dutta S, Wei D, Yueksel H, Chen PY, Liu S, Varshney K (2020) Is there a trade-off between fairness and accuracy? a perspective using mismatched hypothesis testing. In: International conference on machine learning, pp. 2803\u20132813. PMLR"},{"key":"922_CR24","doi-asserted-by":"crossref","unstructured":"Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214\u2013226","DOI":"10.1145\/2090236.2090255"},{"key":"922_CR25","unstructured":"Grgic-Hlaca N, Zafar MB, Gummadi KP, Weller A (2016) The case for process fairness in learning: feature selection for fair decision making. In: NIPS symposium on machine learning and the Law, vol.\u00a01, p.\u00a02"},{"key":"922_CR26","unstructured":"Grgic-Hlaca N, Zafar MB, Gummadi KP, Weller A (2017) On fairness, diversity and randomness in algorithmic decision making. CoRR"},{"key":"922_CR27","unstructured":"Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. Adv Neural Inform Process Syst 29"},{"issue":"5","key":"922_CR28","doi-asserted-by":"publisher","first-page":"1521","DOI":"10.1007\/s11948-017-9975-2","volume":"24","author":"A Howard","year":"2018","unstructured":"Howard A, Borenstein J (2018) The ugly truth about ourselves and our robot creations: the problem of bias and social inequity. Sci Eng Ethics 24(5):1521\u20131536","journal-title":"Sci Eng Ethics"},{"key":"922_CR29","doi-asserted-by":"publisher","unstructured":"Iosifidis V, Fetahu B, Ntoutsi E (2019) Fae: a fairness-aware ensemble framework. In: 2019 IEEE international conference on big data (Big Data), pp. 1375\u20131380. https:\/\/doi.org\/10.1109\/BigData47090.2019.9006487","DOI":"10.1109\/BigData47090.2019.9006487"},{"key":"922_CR30","doi-asserted-by":"crossref","unstructured":"Iosifidis V, Ntoutsi E (2019) Adafair: cumulative fairness adaptive boosting. In: Proceedings of the 28th ACM international conference on information and knowledge management, pp. 781\u2013790","DOI":"10.1145\/3357384.3357974"},{"issue":"1","key":"922_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10115-011-0463-8","volume":"33","author":"F Kamiran","year":"2012","unstructured":"Kamiran F, Calders T (2012) Data preprocessing techniques for classification without discrimination. Knowl Inf Syst 33(1):1\u201333","journal-title":"Knowl Inf Syst"},{"key":"922_CR32","doi-asserted-by":"crossref","unstructured":"Kamishima T, Akaho S, Asoh H, Sakuma J (2012) Fairness-aware classifier with prejudice remover regularizer. In: Joint European conference on machine learning and knowledge discovery in databases, pp. 35\u201350. Springer","DOI":"10.1007\/978-3-642-33486-3_3"},{"key":"922_CR33","doi-asserted-by":"crossref","unstructured":"Kamishima T, Akaho S, Sakuma J (2011) Fairness-aware learning through regularization approach. In: 2011 IEEE 11th international conference on data mining workshops, pp. 643\u2013650. IEEE","DOI":"10.1109\/ICDMW.2011.83"},{"key":"922_CR34","unstructured":"Kearns M, Roth A (2019) The ethical algorithm: the science of socially aware algorithm design. Oxford University Press"},{"key":"922_CR35","doi-asserted-by":"crossref","unstructured":"Kenfack PJ, Khan AM, Kazmi SA, Hussain R, Oracevic A, Khattak AM (2021) Impact of model ensemble on the fairness of classifiers in machine learning. In: 2021 International conference on applied artificial intelligence (ICAPAI), pp. 1\u20136. IEEE","DOI":"10.1109\/ICAPAI49758.2021.9462068"},{"key":"922_CR36","unstructured":"Kusner MJ, Loftus J, Russell C, Silva R (2017) Counterfactual fairness. Adv Neural Inform Process Syst 30"},{"key":"922_CR37","doi-asserted-by":"crossref","unstructured":"Liu S, Vicente LN (2022) Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach. Comput Manag Sci pp. 1\u201325","DOI":"10.1007\/s10287-022-00425-z"},{"key":"922_CR38","unstructured":"Martinez N, Bertran M, Sapiro G (2020) Minimax pareto fairness: A multi objective perspective. In: H.D. III, A.\u00a0Singh (eds.) Proceedings of the 37th international conference on machine learning, Proceedings of machine learning research, vol. 119, pp. 6755\u20136764. PMLR. http:\/\/proceedings.mlr.press\/v119\/martinez20a.html"},{"issue":"6","key":"922_CR39","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3457607","volume":"54","author":"N Mehrabi","year":"2021","unstructured":"Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2021) A survey on bias and fairness in machine learning. ACM Comput Surv (CSUR) 54(6):1\u201335","journal-title":"ACM Comput Surv (CSUR)"},{"key":"922_CR40","unstructured":"Miettinen K (2012) Nonlinear multiobjective optimization, vol.\u00a012. Springer Science & Business Media"},{"key":"922_CR41","doi-asserted-by":"crossref","unstructured":"Osoba OA, Welser IV W (2017) An intelligence in our image: the risks of bias and errors in artificial intelligence. Rand Corporation","DOI":"10.7249\/RR1744"},{"key":"922_CR42","unstructured":"Padh K, Antognini D, Lejal-Glaude E, Faltings B. Musat C (2021) Addressing fairness in classification with a model-agnostic multi-objective algorithm. In: Uncertainty in artificial intelligence, pp. 600\u2013609. PMLR"},{"key":"922_CR43","doi-asserted-by":"publisher","unstructured":"Raimundo MM, Von\u00a0Zuben FJ (2018) Investigating multiobjective methods in multitask classification. In: 2018 International joint conference on neural networks (IJCNN), pp. 1\u20139. https:\/\/doi.org\/10.1109\/IJCNN.2018.8489333","DOI":"10.1109\/IJCNN.2018.8489333"},{"key":"922_CR44","doi-asserted-by":"crossref","unstructured":"Raimundo MM, Von\u00a0Zuben FJ (2020) Multi-criteria analysis involving pareto-optimal misclassification tradeoffs on imbalanced datasets. In: 2020 international joint conference on neural networks (IJCNN), pp. 1\u20138. IEEE","DOI":"10.1109\/IJCNN48605.2020.9207549"},{"issue":"1","key":"922_CR45","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.ejor.2019.11.017","volume":"284","author":"MM Raimundo","year":"2020","unstructured":"Raimundo MM, Ferreira PA, Von Zuben FJ (2020) An extension of the non-inferior set estimation algorithm for many objectives. Eur J Oper Res 284(1):53\u201366. https:\/\/doi.org\/10.1016\/j.ejor.2019.11.017","journal-title":"Eur J Oper Res"},{"key":"922_CR46","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1016\/j.neucom.2020.12.087","volume":"435","author":"MM Raimundo","year":"2021","unstructured":"Raimundo MM, Drumond TF, Marques ACR, Lyra C, Rocha A, Von Zuben FJ (2021) Exploring multiobjective training in multiclass classification. Neurocomputing 435:307\u2013320","journal-title":"Neurocomputing"},{"issue":"1","key":"922_CR47","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-009-9124-7","volume":"33","author":"L Rokach","year":"2010","unstructured":"Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1):1\u201339","journal-title":"Artif Intell Rev"},{"key":"922_CR48","first-page":"7","volume":"1","author":"D Savic","year":"2002","unstructured":"Savic D (2002) Single-objective vs. multiobjective optimisation for integrated decision support. Proc First Bienn Meet Int Environ Model Softw Soc 1:7\u201312","journal-title":"Proc First Bienn Meet Int Environ Model Softw Soc"},{"key":"922_CR49","doi-asserted-by":"crossref","unstructured":"Speicher T, Heidari H, Grgic-Hlaca N, Gummadi KP, Singla A, Weller A, Zafar MB (2018) A unified approach to quantifying algorithmic unfairness: Measuring individual & group unfairness via inequality indices. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, KDD \u201918, p. 2239-2248. Association for computing machinery","DOI":"10.1145\/3219819.3220046"},{"key":"922_CR50","unstructured":"Wadsworth C, Vera F, Piech C (2018) Achieving fairness through adversarial learning: an application to recidivism prediction"},{"key":"922_CR51","unstructured":"Zafar MB, Valera I, Rodriguez MG, Gummadi KP, Weller A (2017) From parity to preference-based notions of fairness in classification"},{"key":"922_CR52","unstructured":"Zafar MB, Valera I, Rodriguez M, Gummadi K, Weller A (2017) From parity to preference-based notions of fairness in classification. Adv Neural Inform Process Syst 30"},{"key":"922_CR53","unstructured":"Zafar MB, Valera I, Rogriguez MG, Gummadi KP (2017) Fairness constraints: mechanisms for fair classification. In: Artificial intelligence and statistics, pp. 962\u2013970. PMLR"},{"key":"922_CR54","unstructured":"Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C (2013) Learning fair representations. In: International conference on machine learning, pp. 325\u2013333. PMLR"},{"key":"922_CR55","doi-asserted-by":"crossref","unstructured":"Zhang W, Bifet A, Zhang X, Weiss JC, Nejdl W (2021) Farf: a fair and adaptive random forests classifier. In: Pacific-Asia conference on knowledge discovery and data mining, pp. 245\u2013256. Springer","DOI":"10.1007\/978-3-030-75765-6_20"},{"key":"922_CR56","doi-asserted-by":"crossref","unstructured":"Zhang Q, Liu J, Zhang Z, Wen J, Mao B, Yao X (2021) Fairer machine learning through multi-objective evolutionary learning. In: International conference on artificial neural networks, pp. 111\u2013123. Springer","DOI":"10.1007\/978-3-030-86380-7_10"},{"key":"922_CR57","doi-asserted-by":"crossref","unstructured":"Zhang Q, Liu J, Zhang Z, Wen J, Mao B, Yao X (2022) Mitigating unfairness via evolutionary multi-objective ensemble learning. In: IEEE transactions on evolutionary computation","DOI":"10.1109\/TEVC.2022.3209544"},{"key":"922_CR58","doi-asserted-by":"crossref","unstructured":"Zhang W, Weiss JC (2021) Fair decision-making under uncertainty. In: 2021 IEEE international conference on data mining (ICDM), pp. 886\u2013895. IEEE","DOI":"10.1109\/ICDM51629.2021.00100"},{"key":"922_CR59","doi-asserted-by":"crossref","unstructured":"Zhang W, Weiss JC (2022) Longitudinal fairness with censorship. In: Proceedings of the AAAI conference on artificial intelligence, vol.\u00a036, pp. 12235\u201312243","DOI":"10.1609\/aaai.v36i11.21484"},{"key":"922_CR60","unstructured":"Zhao H, Gordon G (2019) Inherent tradeoffs in learning fair representations. Adv Neural Inform Process Syst 32"},{"key":"922_CR61","unstructured":"Zliobaite I (2015) On the relation between accuracy and fairness in binary classification"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00922-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-023-00922-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-023-00922-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,19]],"date-time":"2023-08-19T13:09:28Z","timestamp":1692450568000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-023-00922-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,14]]},"references-count":61,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["922"],"URL":"https:\/\/doi.org\/10.1007\/s10618-023-00922-y","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,2,14]]},"assertion":[{"value":"1 September 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 January 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 February 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"This study was supported by Getulio Vargas Foundation and by the Coordination for the Improvement of Higher Education Personnel (CAPES). The authors thank Espa\u00e7o da Escrita - Pr\u00f3-Reitoria de Pesquisa\u2013UNICAMP\u2013for the language services provided.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}