{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T04:24:44Z","timestamp":1728361484382},"reference-count":25,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,11,9]],"date-time":"2022-11-09T00:00:00Z","timestamp":1667952000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,11,9]],"date-time":"2022-11-09T00:00:00Z","timestamp":1667952000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Young Elite Scientists Sponsorship Program by CAST","award":["2021QNRC001"]},{"name":"Key R & D Projects of the Ministry of Science and Technology","award":["2020YFC0832500"]},{"name":"Project by Shanghai AI Laboratory","award":["P22KS00111"]},{"name":"Key Laboratory for Corneal Diseases Research of Zhejiang Province and the Fundamental Research Funds for the Central Universities","award":["226-2022-00142"]},{"name":"Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study","award":["SN-ZJU-SIAS-0010"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["No. 62006207","No. 62037001"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1007\/s10618-022-00886-5","type":"journal-article","created":{"date-parts":[[2022,11,9]],"date-time":"2022-11-09T13:02:58Z","timestamp":1667998978000},"page":"205-227","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Differentiated matching for individual and average treatment effect estimation"],"prefix":"10.1007","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1460-2777","authenticated-orcid":false,"given":"Zhao","family":"Ziyu","sequence":"first","affiliation":[]},{"given":"Kun","family":"Kuang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Li","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Cui","sequence":"additional","affiliation":[]},{"given":"Runze","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,9]]},"reference":[{"issue":"3","key":"886_CR1","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1080\/00273171.2011.568786","volume":"46","author":"PC Austin","year":"2011","unstructured":"Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46(3):399\u2013424","journal-title":"Multivar Behav Res"},{"issue":"1","key":"886_CR2","first-page":"3207","volume":"14","author":"L Bottou","year":"2013","unstructured":"Bottou L, Peters J, Qui\u00f1onero-Candela J, Charles DX, Chickering DM, Portugaly E, Ray D, Simard P, Snelson E (2013) Counterfactual reasoning and learning systems: the example of computational advertising. J Mach Learn Res 14(1):3207\u20133260","journal-title":"J Mach Learn Res"},{"key":"886_CR3","doi-asserted-by":"crossref","unstructured":"Chan D, Ge R, Gershony O, Hesterberg T, Lambert D (2010) Evaluating online ad campaigns in a pipeline: causal models at scale. In: KDD, pp 7\u201316","DOI":"10.1145\/1835804.1835809"},{"issue":"448","key":"886_CR4","doi-asserted-by":"publisher","first-page":"1053","DOI":"10.1080\/01621459.1999.10473858","volume":"94","author":"RH Dehejia","year":"1999","unstructured":"Dehejia RH, Wahba S (1999) Causal effects in nonexperimental studies: reevaluating the evaluation of training programs. J Am Stat Assoc 94(448):1053\u20131062","journal-title":"J Am Stat Assoc"},{"issue":"3","key":"886_CR5","doi-asserted-by":"publisher","first-page":"932","DOI":"10.1162\/REST_a_00318","volume":"95","author":"A Diamond","year":"2013","unstructured":"Diamond A, Sekhon JS (2013) Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Rev Econ Stat 95(3):932\u2013945","journal-title":"Rev Econ Stat"},{"issue":"1","key":"886_CR6","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1198\/jcgs.2010.08162","volume":"20","author":"JL Hill","year":"2011","unstructured":"Hill JL (2011) Bayesian nonparametric modeling for causal inference. J Comput Graph Stat 20(1):217\u2013240","journal-title":"J Comput Graph Stat"},{"issue":"396","key":"886_CR7","doi-asserted-by":"publisher","first-page":"945","DOI":"10.1080\/01621459.1986.10478354","volume":"81","author":"PW Holland","year":"1986","unstructured":"Holland PW (1986) Statistics and causal inference. J Am Stat Assoc 81(396):945\u2013960","journal-title":"J Am Stat Assoc"},{"issue":"1","key":"886_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1093\/pan\/mpr013","volume":"20","author":"SM Iacus","year":"2012","unstructured":"Iacus SM, King G, Porro G (2012) Causal inference without balance checking: coarsened exact matching. Polit Anal 20(1):1\u201324","journal-title":"Polit Anal"},{"key":"886_CR9","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781139025751","volume-title":"Causal inference in statistics, social, and biomedical sciences","author":"GW Imbens","year":"2015","unstructured":"Imbens GW, Rubin DB (2015) Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, Cambridge"},{"key":"886_CR10","unstructured":"Kallus N (2017) A framework for optimal matching for causal inference. In: Artificial Intelligence and Statistics, pp 372\u2013381"},{"key":"886_CR11","unstructured":"Kallus N (2019) Generalized optimal matching methods for causal inference. J Mach Learn Res (forthcoming)"},{"issue":"2","key":"886_CR12","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1145\/1964897.1964905","volume":"12","author":"R Kohavi","year":"2011","unstructured":"Kohavi R, Longbotham R (2011) Unexpected results in online controlled experiments. ACM SIGKDD Explor Newsl 12(2):31\u201335","journal-title":"ACM SIGKDD Explor Newsl"},{"issue":"1","key":"886_CR13","first-page":"1","volume":"14","author":"K Kuang","year":"2019","unstructured":"Kuang K, Cui P, Li B, Jiang M, Wang Y, Wu F, Yang S (2019) Treatment effect estimation via differentiated confounder balancing and regression. ACM Trans Knowledge Dis from Data (TKDD) 14(1):1\u201325","journal-title":"ACM Trans Knowledge Dis from Data (TKDD)"},{"issue":"3","key":"886_CR14","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1016\/j.eng.2019.08.016","volume":"6","author":"K Kuang","year":"2020","unstructured":"Kuang K, Li L, Geng Z, Xu L, Zhang K, Liao B, Huang H, Ding P, Miao W, Jiang Z (2020) Causal inference. Engineering 6(3):253\u2013263","journal-title":"Engineering"},{"key":"886_CR15","unstructured":"LaLonde RJ (1986) Evaluating the econometric evaluations of training programs with experimental data. Am Econom Rev pp 604\u2013620"},{"key":"886_CR16","doi-asserted-by":"crossref","unstructured":"Lewis RA, Reiley D (2008) Does retail advertising work? measuring the effects of advertising on sales via a controlled experiment on yahoo! Measuring the Effects of Advertising on Sales Via a Controlled Experiment on Yahoo","DOI":"10.2139\/ssrn.1865943"},{"key":"886_CR17","unstructured":"Li Y, Kuang K, Li B, Cui P, Tao J, Yang H, Wu F (2020) Continuous treatment effect estimation via generative adversarial de-confounding. In: Proceedings of the 2020 KDD Workshop on Causal Discovery, PMLR, pp 4\u201322"},{"key":"886_CR18","unstructured":"Liu Y, Dieng A, Roy S, Rudin C, Volfovsky A (2019) Interpretable almost matching exactly for causal inference. AISTATS"},{"key":"886_CR19","unstructured":"Omohundro SM (1989) Five balltree construction algorithms. Int Comput Sci Institute Berkeley"},{"issue":"1","key":"886_CR20","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1080\/10618600.2016.1152971","volume":"26","author":"PR Rosenbaum","year":"2017","unstructured":"Rosenbaum PR (2017) Imposing minimax and quantile constraints on optimal matching in observational studies. J Comput Graph Stat 26(1):66\u201378","journal-title":"J Comput Graph Stat"},{"issue":"1","key":"886_CR21","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1093\/biomet\/70.1.41","volume":"70","author":"PR Rosenbaum","year":"1983","unstructured":"Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41\u201355","journal-title":"Biometrika"},{"issue":"1","key":"886_CR22","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1080\/00031305.1985.10479383","volume":"39","author":"PR Rosenbaum","year":"1985","unstructured":"Rosenbaum PR, Rubin DB (1985) Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat 39(1):33\u201338","journal-title":"Am Stat"},{"key":"886_CR23","unstructured":"Shalit U, Johansson FD, Sontag D (2017) Estimating individual treatment effect: generalization bounds and algorithms. In: Int Conf Mach Learn, PMLR, pp 3076\u20133085"},{"key":"886_CR24","first-page":"1","volume":"22","author":"T Wang","year":"2021","unstructured":"Wang T, Morucci M, Awan MU, Liu Y, Roy S, Rudin C, Volfovsky A (2021) Flame: A fast large-scale almost matching exactly approach to causal inference. J Mach Learn Res 22:1\u201341","journal-title":"J Mach Learn Res"},{"key":"886_CR25","doi-asserted-by":"crossref","unstructured":"Zadrozny B (2004) Learning and evaluating classifiers under sample selection bias. In: Proceedings of the twenty-first international conference on Machine learning, p 114","DOI":"10.1145\/1015330.1015425"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-022-00886-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-022-00886-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-022-00886-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,7]],"date-time":"2024-10-07T20:16:24Z","timestamp":1728332184000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-022-00886-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,9]]},"references-count":25,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["886"],"URL":"https:\/\/doi.org\/10.1007\/s10618-022-00886-5","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2022,11,9]]},"assertion":[{"value":"1 March 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 November 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}