{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:19:16Z","timestamp":1740122356391,"version":"3.37.3"},"reference-count":20,"publisher":"Springer Science and Business Media LLC","license":[{"start":{"date-parts":[[2023,2,11]],"date-time":"2023-02-11T00:00:00Z","timestamp":1676073600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,2,11]],"date-time":"2023-02-11T00:00:00Z","timestamp":1676073600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"DOI":"10.1007\/s10618-022-00883-8","type":"journal-article","created":{"date-parts":[[2023,2,11]],"date-time":"2023-02-11T14:01:24Z","timestamp":1676124084000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["kNN matrix profile for knowledge discovery from time series"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6439-7161","authenticated-orcid":false,"given":"Tanmoy","family":"Mondal","sequence":"first","affiliation":[]},{"given":"Reza","family":"Akbarinia","sequence":"additional","affiliation":[]},{"given":"Florent","family":"Masseglia","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,11]]},"reference":[{"issue":"5","key":"883_CR1","doi-asserted-by":"publisher","first-page":"832","DOI":"10.1109\/JSTSP.2016.2543679","volume":"10","author":"A Balasubramanian","year":"2016","unstructured":"Balasubramanian A, Wang J, Prabhakaran B (2016) Discovering multidimensional motifs in physiological signals for personalized healthcare. J Sel Topics Signal Process 10(5):832\u2013841","journal-title":"J Sel Topics Signal Process"},{"key":"883_CR2","doi-asserted-by":"crossref","unstructured":"Dau HA, Bagnall A, Kamgar K, Yeh CC, Zhu Y, Gharghabi S, Ratanamahatana CA, Keogh E (2018) The UCR time series classification archive. https:\/\/www.cs.ucr.edu\/~eamonn\/time_series_data_2018\/","DOI":"10.1109\/JAS.2019.1911747"},{"key":"883_CR3","doi-asserted-by":"crossref","unstructured":"He Y, Chu X, Wang Y (2020) Neighbor profile: Bagging nearest neighbors for unsupervised time series mining. In: 36th IEEE international conference on data engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pp 373\u2013384","DOI":"10.1109\/ICDE48307.2020.00039"},{"key":"883_CR4","unstructured":"Laptev N, Amizadeh S, Billawala Y (2015) A Benchmark Dataset for Time Series Anomaly Detection. https:\/\/yahooresearch.tumblr.com\/post\/114590420346\/a-benchmark-dataset-for-time-series-anomaly"},{"key":"883_CR5","doi-asserted-by":"crossref","unstructured":"Mercer R, Alaee S, Abdoli A, Singh S, Murillo AC, Keogh EJ (2021) Matrix profile XXIII: contrast profile: A novel time series primitive that allows real world classification. In: Bailey J, Miettinen P, Koh YS, Tao D, Wu X (eds) IEEE international conference on data mining, ICDM 2021, Auckland, New Zealand, December 7-10, 2021, pp 1240\u20131245","DOI":"10.1109\/ICDM51629.2021.00151"},{"key":"883_CR6","doi-asserted-by":"crossref","unstructured":"Mueen A, Hamooni H, Estrada T (2014) Time series join on subsequence correlation. In: Kumar R, Toivonen H, Pei J, Huang JZ, Wu X (eds) IEEE international conference on data mining, ICDM 2014, Shenzhen, China, December 14-17, 2014, pp 450\u2013459","DOI":"10.1109\/ICDM.2014.52"},{"key":"883_CR7","doi-asserted-by":"crossref","unstructured":"Mueen A, Keogh EJ, Young NE (2011) Logical-shapelets: an expressive primitive for time series classification. In: Apt\u00e9 C, Ghosh J, Smyth P (eds) ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, CA, USA, August 21-24, 2011, pp 1154\u20131162","DOI":"10.1145\/2020408.2020587"},{"key":"883_CR8","doi-asserted-by":"crossref","unstructured":"Nakamura T, Imamura M, Mercer R, Keogh EJ (2020) MERLIN: parameter-free discovery of arbitrary length anomalies in massive time series archives. In: Plant C, Wang H, Cuzzocrea A, Zaniolo C, Wu X (eds) 20th IEEE international conference on data mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020, pp 1190\u20131195","DOI":"10.1109\/ICDM50108.2020.00147"},{"key":"883_CR9","doi-asserted-by":"crossref","unstructured":"Rakthanmanon T, Campana BJL, Mueen A, Batista GEAPA, Westover MB, Zhu Q, Zakaria J, Keogh EJ (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Yang Q, Agarwal D, Pei J (eds) ACM SIGKDD international conference on knowledge discovery and data mining, pp 262\u2013270","DOI":"10.1145\/2339530.2339576"},{"key":"883_CR10","doi-asserted-by":"crossref","unstructured":"Sinha S (2002) Discriminative motifs. In: Proceedings of the sixth annual international conference on computational biology, pp 291\u2013298","DOI":"10.1145\/565196.565234"},{"issue":"5","key":"883_CR11","doi-asserted-by":"publisher","first-page":"1481","DOI":"10.1007\/s10618-018-0580-z","volume":"32","author":"DE Yagoubi","year":"2018","unstructured":"Yagoubi DE, Akbarinia R, Kolev B, Levchenko O, Masseglia F, Valduriez P, Shasha DE (2018) ParCorr: efficient parallel methods to identify similar time series pairs across sliding windows. Data Mining Knowl Discov 32(5):1481\u20131507","journal-title":"Data Mining Knowl Discov"},{"key":"883_CR12","doi-asserted-by":"crossref","unstructured":"Yeh C-CM, Herle HV, Keogh EJ (2016) Matrix profile III: The matrix profile allows visualization of salient subsequences in massive time series. In: Proceedings of the international conference on data mining (ICDM), pp 579\u2013588","DOI":"10.1109\/ICDM.2016.0069"},{"key":"883_CR13","doi-asserted-by":"crossref","unstructured":"Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Zimmerman Z, Silva DF, Mueen A, Keogh E (2018) Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile 32(1):83\u2013123","DOI":"10.1007\/s10618-017-0519-9"},{"key":"883_CR14","doi-asserted-by":"crossref","unstructured":"Yeh CM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Silva DF, Mueen A, Keogh EJ (2016) Matrix profile I: all pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In: Bonchi F, Domingo-Ferrer J, Baeza-Yates R, Zhou Z, Wu X (eds) IEEE 16th international conference on data mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, pp 1317\u20131322","DOI":"10.1109\/ICDM.2016.0179"},{"key":"883_CR15","doi-asserted-by":"crossref","unstructured":"Zhu Y, Yeh C-CCM, Zimmerman Z, Keogh EJ (2020) Matrix Profile XVII: Indexing the matrix profile to allow arbitrary range queries. In: International conference on data engineering (ICDE), pp 1846\u20131849","DOI":"10.1109\/ICDE48307.2020.00185"},{"key":"883_CR16","doi-asserted-by":"crossref","unstructured":"Zhu Y, Yeh C-CM, Zimmerman Z, Kamgar K, Keogh E (2018) Matrix profile XI: SCRIMP++: Time series motif discovery at interactive speeds. In: Proceedings of the international conference on data mining (ICDM), pp 837\u2013846","DOI":"10.1109\/ICDM.2018.00099"},{"key":"883_CR17","doi-asserted-by":"crossref","unstructured":"Zhu Y, Zimmerman Z Senobari NS, Yeh CM, Funning GJ, Mueen A, Brisk P, Keogh EJ (2016) Matrix profile II: exploiting a novel algorithm and gpus to break the one hundred million barrier for time series motifs and joins. In: Bonchi F, Domingo-Ferrer J, Baeza-Yates R, Zhou Z, Wu X (eds) IEEE 16th international conference on data mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, pp 739\u2013748","DOI":"10.1109\/ICDM.2016.0085"},{"key":"883_CR18","doi-asserted-by":"crossref","unstructured":"Zhu Y, Zimmerman Z, Senobari NS, Yeh C-CM, Funning G, Mueen A, Brisk P, Keogh EJ (2016) Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and Joins. In: Proceedings of the international conference on data mining (ICDM), pp 739\u2013748","DOI":"10.1109\/ICDM.2016.0085"},{"key":"883_CR19","unstructured":"Zimmerman ZP (2019) Breaking computational barriers to perform time series pattern mining at scale and at the edge. PhD thesis, University of California, Riverside, https:\/\/escholarship.org\/content\/qt51z7d647\/qt51z7d647.pdf"},{"key":"883_CR20","doi-asserted-by":"crossref","unstructured":"Zimmerman Z, Kamgar K, Senobari NS, Crites B, Funning GJ, Brisk P, Keogh EJ (2019) Matrix profile XIV: scaling time series motif discovery with gpus to break a quintillion pairwise comparisons a day and beyond. In: Proceedings of the ACM symposium on cloud computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, pp 74\u201386","DOI":"10.1145\/3357223.3362721"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-022-00883-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-022-00883-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-022-00883-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T08:37:32Z","timestamp":1722933452000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-022-00883-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,11]]},"references-count":20,"alternative-id":["883"],"URL":"https:\/\/doi.org\/10.1007\/s10618-022-00883-8","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2023,2,11]]},"assertion":[{"value":"5 January 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 February 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}