{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:19:36Z","timestamp":1740122376550,"version":"3.37.3"},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,11,15]],"date-time":"2022-11-15T00:00:00Z","timestamp":1668470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,11,15]],"date-time":"2022-11-15T00:00:00Z","timestamp":1668470400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Idaho Global Entrepreneurial Mission\/Higher Education Research Council","award":["IGEM22-001"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1007\/s10618-022-00880-x","type":"journal-article","created":{"date-parts":[[2022,11,15]],"date-time":"2022-11-15T11:06:54Z","timestamp":1668510414000},"page":"289-317","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Structural iterative lexicographic autoencoded node representation"],"prefix":"10.1007","volume":"37","author":[{"given":"Mikel","family":"Joaristi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0689-5063","authenticated-orcid":false,"given":"Edoardo","family":"Serra","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,15]]},"reference":[{"issue":"8","key":"880_CR1","doi-asserted-by":"publisher","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","volume":"35","author":"Y Bengio","year":"2013","unstructured":"Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798\u20131828","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"880_CR2","doi-asserted-by":"publisher","DOI":"10.1002\/0470073047","volume-title":"Mining graph data","author":"DJ Cook","year":"2006","unstructured":"Cook DJ, Holder LB (2006) Mining graph data. Wiley, New York"},{"issue":"3","key":"880_CR3","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1007\/BF00994018","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273\u2013297","journal-title":"Mach Learn"},{"key":"880_CR4","doi-asserted-by":"crossref","unstructured":"Donnat C, Zitnik M, Hallac D, Leskovec J (2018) Learning structural node embeddings via diffusion wavelets. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1320\u20131329. ACM","DOI":"10.1145\/3219819.3220025"},{"issue":"1","key":"880_CR5","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","volume":"63","author":"P Geurts","year":"2006","unstructured":"Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3\u201342","journal-title":"Mach Learn"},{"key":"880_CR6","unstructured":"Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: International conference on machine learning, pp 1263\u20131272. PMLR"},{"key":"880_CR7","volume-title":"Deep learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge"},{"key":"880_CR8","doi-asserted-by":"crossref","unstructured":"Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp 855\u2013864. ACM","DOI":"10.1145\/2939672.2939754"},{"key":"880_CR9","unstructured":"Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024\u20131034"},{"key":"880_CR10","volume-title":"Ordered sets","author":"E Harzheim","year":"2006","unstructured":"Harzheim E (2006) Ordered sets, vol 7. Springer, New York"},{"issue":"8","key":"880_CR11","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735\u20131780","journal-title":"Neural Comput"},{"key":"880_CR12","unstructured":"Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980"},{"key":"880_CR13","unstructured":"Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907"},{"key":"880_CR14","unstructured":"Leskovec J, Krevl A (2014) Snap datasets: stanford large network dataset collection"},{"key":"880_CR15","unstructured":"Lou Z, You J, Wen C, Canedo A, Leskovec J, et al (2020) Neural subgraph matching. arXiv preprint arXiv:2007.03092"},{"key":"880_CR16","doi-asserted-by":"crossref","unstructured":"Meng Q, Catchpoole D, Skillicom D, Kennedy PJ (2017) Relational autoencoder for feature extraction. In: 2017 International joint conference on neural networks (IJCNN), pp 364\u2013371. IEEE","DOI":"10.1109\/IJCNN.2017.7965877"},{"key":"880_CR17","unstructured":"Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781"},{"key":"880_CR18","unstructured":"Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp 3111\u20133119"},{"key":"880_CR19","doi-asserted-by":"crossref","unstructured":"Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407","DOI":"10.24963\/ijcai.2018\/362"},{"issue":"14","key":"880_CR20","doi-asserted-by":"publisher","first-page":"2849","DOI":"10.1016\/j.physa.2010.03.006","volume":"389","author":"Y Pan","year":"2010","unstructured":"Pan Y, Li DH, Liu JG, Liang JZ (2010) Detecting community structure in complex networks via node similarity. Physica A 389(14):2849\u20132857","journal-title":"Physica A"},{"key":"880_CR21","doi-asserted-by":"crossref","unstructured":"Pedarsani P, Grossglauser M (2011) On the privacy of anonymized networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1235\u20131243. ACM","DOI":"10.1145\/2020408.2020596"},{"key":"880_CR22","doi-asserted-by":"crossref","unstructured":"Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 701\u2013710. ACM","DOI":"10.1145\/2623330.2623732"},{"key":"880_CR23","unstructured":"Ribeiro LF, Saverese PH, Figueiredo DR (2017) struc2vec: Learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 385\u2013394. ACM"},{"issue":"9","key":"880_CR24","first-page":"2539","volume":"12","author":"N Shervashidze","year":"2011","unstructured":"Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. J Mach Learn Res 12(9):2539\u20132561","journal-title":"J Mach Learn Res"},{"key":"880_CR25","first-page":"3104","volume":"2","author":"I Sutskever","year":"2014","unstructured":"Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst 2:3104\u20133112","journal-title":"Adv Neural Inf Process Syst"},{"key":"880_CR26","doi-asserted-by":"crossref","unstructured":"Symeonidis P, Tiakas E, Manolopoulos Y (2010) Transitive node similarity for link prediction in social networks with positive and negative links. In: Proceedings of the fourth ACM conference on Recommender systems, pp 183\u2013190. ACM","DOI":"10.1145\/1864708.1864744"},{"key":"880_CR27","doi-asserted-by":"crossref","unstructured":"Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web conferences steering committee, pp 1067\u20131077","DOI":"10.1145\/2736277.2741093"},{"key":"880_CR28","doi-asserted-by":"publisher","unstructured":"Tsitsulin A, Mottin D, Karras P, M\u00fcller E (2018) Verse. Proceedings of the 2018 world wide web conference on world wide web\u2014WWW \u201918. https:\/\/doi.org\/10.1145\/3178876.3186120","DOI":"10.1145\/3178876.3186120"},{"key":"880_CR29","doi-asserted-by":"crossref","unstructured":"Tu K, Cui P, Wang X, Yu PS, Zhu W (2018) Deep recursive network embedding with regular equivalence. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2357\u20132366","DOI":"10.1145\/3219819.3220068"},{"key":"880_CR30","unstructured":"Veli\u010dkovi\u0107 P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:1710.10903"},{"issue":"3","key":"880_CR31","first-page":"4","volume":"2","author":"P Velickovic","year":"2019","unstructured":"Velickovic P, Fedus W, Hamilton WL, Li\u00f2 P, Bengio Y, Hjelm RD (2019) Deep graph infomax. ICLR (Poster) 2(3):4","journal-title":"ICLR (Poster)"},{"key":"880_CR32","unstructured":"Weisfeiler B, Leman A (1968) The reduction of a graph to canonical form and the algebgra which appears therein. NTI, Series 2"},{"issue":"1\u20133","key":"880_CR33","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/0169-7439(87)80084-9","volume":"2","author":"S Wold","year":"1987","unstructured":"Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1\u20133):37\u201352","journal-title":"Chemom Intell Lab Syst"},{"key":"880_CR34","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/TNNLS.2020.2978386","volume":"32","author":"Z Wu","year":"2020","unstructured":"Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32:4\u201324","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"880_CR35","unstructured":"Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? arXiv preprint arXiv:1810.00826"},{"key":"880_CR36","doi-asserted-by":"crossref","unstructured":"Yin Y, Wei Z (2019) Scalable graph embeddings via sparse transpose proximities. CoRR arXiv:1905.07245","DOI":"10.1145\/3292500.3330860"},{"issue":"4","key":"880_CR37","doi-asserted-by":"publisher","first-page":"452","DOI":"10.1086\/jar.33.4.3629752","volume":"33","author":"WW Zachary","year":"1977","unstructured":"Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452\u2013473","journal-title":"J Anthropol Res"},{"key":"880_CR38","unstructured":"Zhang D, Yin J, Zhu X, Zhang C (2018) Network representation learning: a survey. IEEE Trans Big Data"},{"key":"880_CR39","doi-asserted-by":"publisher","unstructured":"Zhang Z, Cui P, Wang X, Pei J, Yao X, Zhu W (2018) Arbitrary-order proximity preserved network embedding. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, KDD \u201918, pp 2778\u20132786. Association for computing machinery, New York, USA. https:\/\/doi.org\/10.1145\/3219819.3219969","DOI":"10.1145\/3219819.3219969"},{"key":"880_CR40","unstructured":"Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2018) Graph neural networks: a review of methods and applications. arXiv preprint arXiv:1812.08434"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-022-00880-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-022-00880-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-022-00880-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T17:44:55Z","timestamp":1672854295000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-022-00880-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,15]]},"references-count":40,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["880"],"URL":"https:\/\/doi.org\/10.1007\/s10618-022-00880-x","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2022,11,15]]},"assertion":[{"value":"27 December 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 November 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}