{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T15:14:59Z","timestamp":1726413299200},"reference-count":28,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2021,9,18]],"date-time":"2021-09-18T00:00:00Z","timestamp":1631923200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,18]],"date-time":"2021-09-18T00:00:00Z","timestamp":1631923200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1007\/s10618-021-00798-w","type":"journal-article","created":{"date-parts":[[2021,9,18]],"date-time":"2021-09-18T19:17:36Z","timestamp":1631992656000},"page":"2369-2388","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Time series clustering in linear time complexity"],"prefix":"10.1007","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3866-3988","authenticated-orcid":false,"given":"Xiaosheng","family":"Li","sequence":"first","affiliation":[]},{"given":"Jessica","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,18]]},"reference":[{"key":"798_CR1","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.is.2015.04.007","volume":"53","author":"S Aghabozorgi","year":"2015","unstructured":"Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inf Syst 53:16\u201338","journal-title":"Inf Syst"},{"key":"798_CR2","unstructured":"Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD workshop, Seattle, WA 10:359\u2013370"},{"key":"798_CR3","doi-asserted-by":"crossref","unstructured":"Dau HA, Keogh E, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Yanping, Hu B, Begum N, Bagnall A, Mueen A, Batista G, Hexagon-ML (2018) The ucr time series classification archive. https:\/\/www.cs.ucr.edu\/~eamonn\/time_series_data_2018\/","DOI":"10.1109\/JAS.2019.1911747"},{"issue":"Jan","key":"798_CR4","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(Jan):1\u201330","journal-title":"J Mach Learn Res"},{"key":"798_CR5","doi-asserted-by":"crossref","unstructured":"Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases, vol\u00a023. ACM","DOI":"10.1145\/191843.191925"},{"key":"798_CR6","doi-asserted-by":"crossref","unstructured":"Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the twenty-first international conference on Machine learning, ACM, p\u00a036","DOI":"10.1145\/1015330.1015414"},{"issue":"4","key":"798_CR7","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1109\/10.486255","volume":"43","author":"L Gupta","year":"1996","unstructured":"Gupta L, Molfese DL, Tammana R, Simos PG (1996) Nonlinear alignment and averaging for estimating the evoked potential. IEEE Trans Biomed Eng 43(4):348\u2013356","journal-title":"IEEE Trans Biomed Eng"},{"key":"798_CR8","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1007\/978-1-4612-0865-5_26","volume-title":"Probability inequalities for sums of bounded random variables In the collected works of Wassily Hoeffding","author":"W Hoeffding","year":"1994","unstructured":"Hoeffding W (1994) Probability inequalities for sums of bounded random variables In the collected works of Wassily Hoeffding. Springer, Berlin, pp 409\u2013426"},{"issue":"1","key":"798_CR9","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1137\/S1064827595287997","volume":"20","author":"G Karypis","year":"1998","unstructured":"Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359\u2013392","journal-title":"SIAM J Sci Comput"},{"key":"798_CR10","doi-asserted-by":"crossref","unstructured":"Kumar M, Patel NR, Woo J (2002) Clustering seasonality patterns in the presence of errors. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 557\u2013563","DOI":"10.1145\/775047.775129"},{"key":"798_CR11","doi-asserted-by":"crossref","unstructured":"Kumar N, Lolla VN, Keogh E, Lonardi S, Ratanamahatana CA, Wei L (2005) Time-series bitmaps: a practical visualization tool for working with large time series databases. In: Proceedings of the 2005 SIAM international conference on data mining, SIAM, pp 531\u2013535","DOI":"10.1137\/1.9781611972757.55"},{"key":"798_CR12","doi-asserted-by":"crossref","unstructured":"Lei Q, Yi J, Vaculin R, Wu L, Dhillon IS (2019) Similarity preserving representation learning for time series clustering. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, AAAI Press, pp 2845\u20132851","DOI":"10.24963\/ijcai.2019\/394"},{"key":"798_CR13","doi-asserted-by":"crossref","unstructured":"Li X, Lin J (2017) Linear time complexity time series classification with bag-of-pattern-features. In: 2017 IEEE International Conference on Data Mining (ICDM), IEEE, pp 277\u2013286","DOI":"10.1109\/ICDM.2017.37"},{"issue":"2","key":"798_CR14","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s10618-007-0064-z","volume":"15","author":"J Lin","year":"2007","unstructured":"Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time series. Data Min Knowl Discov 15(2):107\u2013144","journal-title":"Data Min Knowl Discov"},{"key":"798_CR15","unstructured":"MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA 1:281\u2013297"},{"key":"798_CR16","unstructured":"Madiraju NS, Sadat SM, Fisher D, Karimabadi H (2018) Deep temporal clustering: Fully unsupervised learning of time-domain features"},{"key":"798_CR17","doi-asserted-by":"crossref","unstructured":"Niennattrakul V, Ratanamahatana CA (2009) Shape averaging under time warping. In: 2009 6th International Conference on Electrical Engineering\/Electronics, Computer, Telecommunications and Information Technology, IEEE, vol\u00a02, pp 626\u2013629","DOI":"10.1109\/ECTICON.2009.5137128"},{"key":"798_CR18","doi-asserted-by":"crossref","unstructured":"Paparrizos J, Gravano L (2015) k-shape: Efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, ACM, pp 1855\u20131870","DOI":"10.1145\/2723372.2737793"},{"issue":"3","key":"798_CR19","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1016\/j.patcog.2010.09.013","volume":"44","author":"F Petitjean","year":"2011","unstructured":"Petitjean F, Ketterlin A, Gan\u00e7arski P (2011) A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit 44(3):678\u2013693","journal-title":"Pattern Recognit"},{"volume-title":"Everything you know about dynamic time warping is wrong","year":"2004","author":"CA Ratanamahatana","key":"798_CR20","unstructured":"Ratanamahatana CA, Keogh E (2004) Everything you know about dynamic time warping is wrong. Citeseer, USA"},{"issue":"3","key":"798_CR21","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1007\/s10994-008-5093-3","volume":"74","author":"U Rebbapragada","year":"2009","unstructured":"Rebbapragada U, Protopapas P, Brodley CE, Alcock C (2009) Finding anomalous periodic time series. Mach Learn 74(3):281\u2013313","journal-title":"Mach Learn"},{"key":"798_CR22","unstructured":"Saito N, Coifman RR (1994) Local feature extraction and its applications using a library of bases. PhD thesis, Yale University"},{"key":"798_CR23","doi-asserted-by":"crossref","unstructured":"Steinbach M, Tan PN, Kumar V, Klooster S, Potter C (2003) Discovery of climate indices using clustering. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 446\u2013455","DOI":"10.1145\/956750.956801"},{"issue":"18","key":"798_CR24","doi-asserted-by":"publisher","first-page":"2281","DOI":"10.1093\/bioinformatics\/btq422","volume":"26","author":"N Subhani","year":"2010","unstructured":"Subhani N, Rueda L, Ngom A, Burden CJ (2010) Multiple gene expression profile alignment for microarray time-series data clustering. Bioinformatics 26(18):2281\u20132288","journal-title":"Bioinformatics"},{"issue":"2","key":"798_CR25","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1007\/s10618-012-0250-5","volume":"26","author":"X Wang","year":"2013","unstructured":"Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Discov 26(2):275\u2013309","journal-title":"Data Min Knowl Discov"},{"key":"798_CR26","doi-asserted-by":"crossref","unstructured":"Yang J, Leskovec J (2011) Patterns of temporal variation in online media. In: Proceedings of the fourth ACM international conference on Web search and data mining, pp 177\u2013186","DOI":"10.1145\/1935826.1935863"},{"key":"798_CR27","doi-asserted-by":"crossref","unstructured":"Zakaria J, Mueen A, Keogh E (2012) Clustering time series using unsupervised-shapelets. In: 2012 IEEE 12th International Conference on Data Mining, IEEE, pp 785\u2013794","DOI":"10.1109\/ICDM.2012.26"},{"key":"798_CR28","unstructured":"Zhang Q, Wu J, Yang H, Tian Y, Zhang C (2016) Unsupervised feature learning from time series. In: IJCAI, pp 2322\u20132328"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00798-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-021-00798-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00798-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,29]],"date-time":"2021-10-29T08:16:39Z","timestamp":1635495399000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-021-00798-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,18]]},"references-count":28,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,11]]}},"alternative-id":["798"],"URL":"https:\/\/doi.org\/10.1007\/s10618-021-00798-w","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2021,9,18]]},"assertion":[{"value":"6 May 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 September 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 September 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}