{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,15]],"date-time":"2024-06-15T00:31:55Z","timestamp":1718411515903},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T00:00:00Z","timestamp":1631750400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T00:00:00Z","timestamp":1631750400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1007\/s10618-021-00794-0","type":"journal-article","created":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T09:02:42Z","timestamp":1631782962000},"page":"2341-2368","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering"],"prefix":"10.1007","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4714-3725","authenticated-orcid":false,"given":"Rodrigo","family":"Randel","sequence":"first","affiliation":[]},{"given":"Daniel","family":"Aloise","sequence":"additional","affiliation":[]},{"given":"Simon J.","family":"Blanchard","sequence":"additional","affiliation":[]},{"given":"Alain","family":"Hertz","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,16]]},"reference":[{"key":"794_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-14142-8","volume-title":"Data mining","author":"CC Aggarwal","year":"2015","unstructured":"Aggarwal CC (2015) Data mining. Springer, Berlin. https:\/\/doi.org\/10.1007\/978-3-319-14142-8"},{"issue":"2","key":"794_CR2","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s10994-009-5103-0","volume":"75","author":"D Aloise","year":"2009","unstructured":"Aloise D, Deshpande A, Hansen P, Popat P (2009) Np-hardness of Euclidean sum-of-squares clustering. Mach Learn 75(2):245\u2013248","journal-title":"Mach Learn"},{"issue":"1\u20132","key":"794_CR3","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1007\/s10107-010-0349-7","volume":"131","author":"D Aloise","year":"2010","unstructured":"Aloise D, Hansen P, Liberti L (2010) An improved column generation algorithm for minimum sum-of-squares clustering. Math Program 131(1\u20132):195\u2013220. https:\/\/doi.org\/10.1007\/s10107-010-0349-7","journal-title":"Math Program"},{"key":"794_CR4","series-title":"Book section semi-supervised clustering","doi-asserted-by":"publisher","DOI":"10.1201\/b19706-26","volume-title":"Semi-supervised clustering","author":"J Anil","year":"2015","unstructured":"Anil J, Rong J, Radha C (2015) Semi-supervised clustering. Book section semi-supervised clustering. CRC Press, Boca Raton. https:\/\/doi.org\/10.1201\/b19706-26"},{"issue":"3","key":"794_CR5","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1016\/j.ipm.2011.08.006","volume":"48","author":"ME Ares","year":"2012","unstructured":"Ares ME, Parapar J, Barreiro A (2012) An experimental study of constrained clustering effectiveness in presence of erroneous constraints. Inf Process Manag 48(3):537\u2013551. https:\/\/doi.org\/10.1016\/j.ipm.2011.08.006","journal-title":"Inf Process Manag"},{"key":"794_CR6","doi-asserted-by":"publisher","unstructured":"Avella P, Sassano A, Vasil\u2019ev I (2007) Computational study of large-scale p-median problems. Math Program 109(1):89\u2013114. https:\/\/doi.org\/10.1007\/s10107-005-0700-6","DOI":"10.1007\/s10107-005-0700-6"},{"key":"794_CR7","unstructured":"Basu S, Banerjee A, Mooney RJ (2002) Semi-supervised clustering by seeding, In: Proceedings of the nineteenth international conference on machine learning, vol 656012. Morgan Kaufmann Publishers Inc., pp 27\u201334"},{"key":"794_CR8","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972740.31","author":"S Basu","year":"2004","unstructured":"Basu S, Banerjee A, Mooney RJ (2004) Active semi-supervision for pairwise constrained clustering. Soc Ind Appl Math. https:\/\/doi.org\/10.1137\/1.9781611972740.31","journal-title":"Soc Ind Appl Math"},{"key":"794_CR9","doi-asserted-by":"crossref","unstructured":"Basu S, Bilenko M, Banerjee A, Mooney RJ (2006) Probabilistic semi-supervised clustering with constraints. In: Semi-supervised learning. pp 71\u201398","DOI":"10.7551\/mitpress\/6173.003.0008"},{"key":"794_CR10","volume-title":"Introduction to linear optimization","author":"D Bertsimas","year":"1997","unstructured":"Bertsimas D, Tsitsiklis J (1997) Introduction to linear optimization, 1st edn. Athena Scientific, Belmont","edition":"1"},{"key":"794_CR11","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-0450-1","volume-title":"Pattern recognition with fuzzy objective function algorithms","author":"J Bezdek","year":"1981","unstructured":"Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York"},{"issue":"4","key":"794_CR12","doi-asserted-by":"publisher","first-page":"741","DOI":"10.1007\/s11336-012-9283-3","volume":"77","author":"SJ Blanchard","year":"2012","unstructured":"Blanchard SJ, Aloise D, DeSarbo WS (2012) The heterogeneous p-median problem for categorization based clustering. Psychometrika 77(4):741\u2013762. https:\/\/doi.org\/10.1007\/s11336-012-9283-3","journal-title":"Psychometrika"},{"key":"794_CR13","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-3-642-95322-4_5","volume-title":"Optimization and operations research","author":"P Brucker","year":"1978","unstructured":"Brucker P (1978) On the complexity of clustering problems. In: Henn R, Korte B, Oettli W (eds) Optimization and operations research. Springer, Berlin, pp 45\u201354. https:\/\/doi.org\/10.1007\/978-3-642-95322-4_5"},{"issue":"3","key":"794_CR14","doi-asserted-by":"publisher","first-page":"344","DOI":"10.1007\/s10618-013-0311-4","volume":"27","author":"RJ Campello","year":"2013","unstructured":"Campello RJ, Moulavi D, Zimek A, Sander J (2013) A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Min Knowl Discov 27(3):344\u2013371","journal-title":"Data Min Knowl Discov"},{"issue":"2","key":"794_CR15","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1109\/TPAMI.2010.85","volume":"33","author":"IT Christou","year":"2011","unstructured":"Christou IT (2011) Coordination of cluster ensembles via exact methods. IEEE Trans Pattern Anal Mach Intell 33(2):279\u201393. https:\/\/doi.org\/10.1109\/TPAMI.2010.85","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"794_CR16","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1016\/j.ins.2017.06.019","volume":"415","author":"LR Costa","year":"2017","unstructured":"Costa LR, Aloise D, Mladenovi\u0107 N (2017) Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering. Inf Sci 415:247\u2013253","journal-title":"Inf Sci"},{"key":"794_CR17","doi-asserted-by":"publisher","unstructured":"Davidson I (2012) Two approaches to understanding when constraints help clustering. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining\u2014KDD \u201912. ACM, 2339734, pp 1312\u20131320. https:\/\/doi.org\/10.1145\/2339530.2339734","DOI":"10.1145\/2339530.2339734"},{"key":"794_CR18","doi-asserted-by":"publisher","unstructured":"Davidson I, Ravi SS (2005) Clustering with constraints: feasibility issues and the k-means algorithm. https:\/\/doi.org\/10.1137\/1.9781611972757.13","DOI":"10.1137\/1.9781611972757.13"},{"key":"794_CR19","unstructured":"Davidson I, Ravi SS (2006)Identifying and generating easy sets of constraints for clustering. In: Proceedings of the 21st national conference on artificial intelligence\u2014Volume 1, vol 1597593. AAAI Press, pp 336\u2013341"},{"key":"794_CR20","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/11871637_15","volume-title":"Knowledge discovery in databases: PKDD 2006","author":"I Davidson","year":"2006","unstructured":"Davidson I, Wagstaff KL, Basu S (2006) Measuring constraint-set utility for partitional clustering algorithms. In: F\u00fcrnkranz J, Scheffer T, Spiliopoulou M (eds) Knowledge discovery in databases: PKDD 2006. Springer, Berlin, pp 115\u2013126"},{"issue":"4","key":"794_CR21","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1109\/TPAMI.1980.4767027","volume":"2","author":"M Delattre","year":"1980","unstructured":"Delattre M, Hansen P (1980) Bicriterion cluster analysis. IEEE Trans Pattern Anal Mach Intell PAMI 2(4):277\u2013291. https:\/\/doi.org\/10.1109\/TPAMI.1980.4767027","journal-title":"IEEE Trans Pattern Anal Mach Intell PAMI"},{"key":"794_CR22","unstructured":"Dua D, Graff C (2017) UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml"},{"issue":"2","key":"794_CR23","doi-asserted-by":"publisher","first-page":"362","DOI":"10.2307\/2528096","volume":"21","author":"AWF Edwards","year":"1965","unstructured":"Edwards AWF, Cavalli-Sforza LL (1965) A method for cluster analysis. Biometrics 21(2):362\u2013375","journal-title":"Biometrics"},{"issue":"2","key":"794_CR24","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","volume":"7","author":"RA Fisher","year":"1936","unstructured":"Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179\u2013188","journal-title":"Ann Eugen"},{"issue":"1","key":"794_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1287\/mnsc.27.1.1","volume":"27","author":"ML Fisher","year":"1981","unstructured":"Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 27(1):1\u201318. https:\/\/doi.org\/10.1287\/mnsc.27.1.1","journal-title":"Manag Sci"},{"issue":"4","key":"794_CR26","doi-asserted-by":"publisher","first-page":"546","DOI":"10.1287\/ijoc.1100.0418","volume":"23","author":"S Garc\u00eda","year":"2011","unstructured":"Garc\u00eda S, Labb\u00e9 M, Mar\u00edn A (2011) Solving large p-median problems with a radius formulation. INFORMS J Comput 23(4):546\u2013556. https:\/\/doi.org\/10.1287\/ijoc.1100.0418","journal-title":"INFORMS J Comput"},{"issue":"2","key":"794_CR27","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1007\/s10618-016-0480-z","volume":"31","author":"V Grossi","year":"2017","unstructured":"Grossi V, Romei A, Turini F (2017a) Survey on using constraints in data mining. Data Min Knowl Discov 31(2):424\u2013464. https:\/\/doi.org\/10.1007\/s10618-016-0480-z","journal-title":"Data Min Knowl Discov"},{"issue":"2","key":"794_CR28","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1007\/s10618-016-0480-z","volume":"31","author":"V Grossi","year":"2017","unstructured":"Grossi V, Romei A, Turini F (2017b) Survey on using constraints in data mining. Data Min Knowl Discov 31(2):424\u2013464","journal-title":"Data Min Knowl Discov"},{"issue":"1\u20133","key":"794_CR29","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/bf02614317","volume":"79","author":"P Hansen","year":"1997","unstructured":"Hansen P, Jaumard B (1997) Cluster analysis and mathematical programming. Math Program 79(1\u20133):191\u2013215. https:\/\/doi.org\/10.1007\/bf02614317","journal-title":"Math Program"},{"issue":"3","key":"794_CR30","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1007\/s10618-009-0135-4","volume":"19","author":"P Hansen","year":"2009","unstructured":"Hansen P, Brimberg J, Uro\u0161evi\u0107 D, Mladenovi\u0107 N (2009) Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Min Knowl Discov 19(3):351\u2013375","journal-title":"Data Min Knowl Discov"},{"issue":"1","key":"794_CR31","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1007\/bf01580223","volume":"6","author":"M Held","year":"1974","unstructured":"Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization. Math Program 6(1):62\u201388. https:\/\/doi.org\/10.1007\/bf01580223","journal-title":"Math Program"},{"issue":"1","key":"794_CR32","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1007\/BF01908075","volume":"2","author":"L Hubert","year":"1985","unstructured":"Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193\u2013218. https:\/\/doi.org\/10.1007\/BF01908075","journal-title":"J Classif"},{"key":"794_CR33","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1137\/0137041","volume":"37","author":"O Kariv","year":"1979","unstructured":"Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. II: the p-medians. SIAM J Appl Math 37:539\u2013560. https:\/\/doi.org\/10.1137\/0137041","journal-title":"SIAM J Appl Math"},{"key":"794_CR34","volume-title":"Finding groups in data: an introduction to cluster analysis,","author":"L Kaufman","year":"2009","unstructured":"Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. Wiley, Hoboken"},{"issue":"5","key":"794_CR35","doi-asserted-by":"publisher","first-page":"664","DOI":"10.1509\/jmr.13.0056","volume":"50","author":"S Kim","year":"2013","unstructured":"Kim S, Blanchard SJ, DeSarbo WS, Fong DK (2013) Implementing managerial constraints in model-based segmentation: extensions of Kim, Fong, and DeSarbo (2012) with an application to heterogeneous perceptions of service quality. J Mark Res 50(5):664\u2013673","journal-title":"J Mark Res"},{"key":"794_CR36","series-title":"Operations research\/computer science interfaces series","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1007\/0-387-25383-1_16","volume-title":"Computationally difficult instances for the uncapacitated facility location problem","author":"Y Kochetov","year":"2005","unstructured":"Kochetov Y, Ivanenko D (2005) Computationally difficult instances for the uncapacitated facility location problem. Operations research\/computer science interfaces series. Springer, Boston, pp 351\u2013367"},{"key":"794_CR37","doi-asserted-by":"publisher","unstructured":"Mallapragada PK, Jin R, Jain AK (2008) Active query selection for semi-supervised clustering. In: 2008 19th international conference on pattern recognition. IEEE, pp 1\u20134. https:\/\/doi.org\/10.1109\/ICPR.2008.4761792","DOI":"10.1109\/ICPR.2008.4761792"},{"key":"794_CR38","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.fss.2020.01.001","volume":"389","author":"DN Pinheiro","year":"2020","unstructured":"Pinheiro DN, Aloise D, Blanchard SJ (2020) Convex fuzzy k-medoids clustering. Fuzzy Sets Syst 389:66\u201392","journal-title":"Fuzzy Sets Syst"},{"key":"794_CR39","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1007\/978-3-030-15843-9_2","volume-title":"Variable neighborhood search","author":"R Randel","year":"2019","unstructured":"Randel R, Aloise D, Mladenovi\u0107 N, Hansen P (2019) On the k-medoids model for semi-supervised clustering. In: Sifaleras A, Salhi S, Brimberg J (eds) Variable neighborhood search. Springer, Cham, pp 13\u201327"},{"issue":"1","key":"794_CR40","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1007\/s10479-006-0154-0","volume":"150","author":"MGC Resende","year":"2007","unstructured":"Resende MGC, Werneck RF (2007) A fast swap-based local search procedure for location problems. Ann Oper Res 150(1):205\u2013230. https:\/\/doi.org\/10.1007\/s10479-006-0154-0","journal-title":"Ann Oper Res"},{"issue":"3","key":"794_CR41","doi-asserted-by":"publisher","first-page":"659","DOI":"10.1016\/j.ejor.2016.03.033","volume":"253","author":"\u00c9 Santi","year":"2016","unstructured":"Santi \u00c9, Aloise D, Blanchard SJ (2016) A model for clustering data from heterogeneous dissimilarities. Eur J Oper Res 253(3):659\u2013672","journal-title":"Eur J Oper Res"},{"key":"794_CR42","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-82118-9","volume-title":"Minimization methods for nondifferentiable functions","author":"NZ Shor","year":"1985","unstructured":"Shor NZ, Kiwiel KC, Ruszcaynski A (1985) Minimization methods for nondifferentiable functions. Springer, Berlin"},{"key":"794_CR43","first-page":"1","volume-title":"Knowledge discovery in inductive databases","author":"KL Wagstaff","year":"2007","unstructured":"Wagstaff KL (2007) Value, cost, and sharing: open issues in constrained clustering. In: D\u017eeroski S, Struyf J (eds) Knowledge discovery in inductive databases. Springer, Berlin, pp 1\u201310"},{"key":"794_CR44","unstructured":"Wagstaff K, Cardie C, Rogers S, Schr\u00f6dl S (2001). Constrained k-means clustering with background knowledge, vol ICML \u201901. In: Proceedings of the eighteenth international conference on machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 577\u2013584"},{"issue":"1","key":"794_CR45","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1109\/tkde.2013.22","volume":"26","author":"S Xiong","year":"2014","unstructured":"Xiong S, Azimi J, Fern XZ (2014) Active learning of constraints for semi-supervised clustering. IEEE Trans Knowl Data Eng 26(1):43\u201354. https:\/\/doi.org\/10.1109\/tkde.2013.22","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"1","key":"794_CR46","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1109\/TPAMI.2016.2539965","volume":"39","author":"C Xiong","year":"2017","unstructured":"Xiong C, Johnson DM, Corso JJ (2017) Active clustering with model-based uncertainty reduction. IEEE Trans Pattern Anal Mach Intell 39(1):5\u201317. https:\/\/doi.org\/10.1109\/TPAMI.2016.2539965","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"794_CR47","doi-asserted-by":"publisher","DOI":"10.2200\/S00196ED1V01Y200906AIM006","volume-title":"Introduction to semi-supervised learning","author":"X Zhu","year":"2009","unstructured":"Zhu X, Goldberg AB, Brachman R, Dietterich T (2009) Introduction to semi-supervised learning. Morgan and Claypool Publishers, San Rafael"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00794-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-021-00794-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00794-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,8]],"date-time":"2023-11-08T21:54:28Z","timestamp":1699480468000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-021-00794-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,16]]},"references-count":47,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,11]]}},"alternative-id":["794"],"URL":"https:\/\/doi.org\/10.1007\/s10618-021-00794-0","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,9,16]]},"assertion":[{"value":"19 December 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 September 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 September 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}