{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:19:55Z","timestamp":1740122395364,"version":"3.37.3"},"reference-count":52,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T00:00:00Z","timestamp":1624406400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T00:00:00Z","timestamp":1624406400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100008299","name":"Dartmouth College","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100008299","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1007\/s10618-021-00774-4","type":"journal-article","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T10:05:03Z","timestamp":1624442703000},"page":"1906-1940","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Hyperbolic node embedding for temporal networks"],"prefix":"10.1007","volume":"35","author":[{"given":"Lili","family":"Wang","sequence":"first","affiliation":[]},{"given":"Chenghan","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Weicheng","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Ruibo","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2564-8909","authenticated-orcid":false,"given":"Soroush","family":"Vosoughi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,23]]},"reference":[{"key":"774_CR1","doi-asserted-by":"publisher","first-page":"30108","DOI":"10.1038\/srep30108","volume":"6","author":"G Alanis-Lobato","year":"2016","unstructured":"Alanis-Lobato G, Mier P, Andrade-Navarro MA (2016a) Efficient embedding of complex networks to hyperbolic space via their Laplacian. Sci Rep 6:30108","journal-title":"Sci Rep"},{"issue":"1","key":"774_CR2","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1007\/s41109-016-0013-0","volume":"1","author":"G Alanis-Lobato","year":"2016","unstructured":"Alanis-Lobato G, Mier P, Andrade-Navarro MA (2016b) Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Appl Netw Sci 1(1):10","journal-title":"Appl Netw Sci"},{"issue":"5","key":"774_CR3","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1145\/2160718.2160738","volume":"55","author":"N Atias","year":"2012","unstructured":"Atias N, Sharan R (2012) Comparative analysis of protein networks: hard problems, practical solutions. Commun ACM 55(5):88\u201397","journal-title":"Commun ACM"},{"key":"774_CR4","doi-asserted-by":"crossref","unstructured":"Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM international conference on information and knowledge management, pp 891\u2013900","DOI":"10.1145\/2806416.2806512"},{"key":"774_CR5","doi-asserted-by":"crossref","unstructured":"Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Thirtieth AAAI conference on artificial intelligence","DOI":"10.1609\/aaai.v30i1.10179"},{"key":"774_CR6","unstructured":"Chamberlain BP, Clough J, Deisenroth MP (2017) Neural embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359"},{"key":"774_CR7","unstructured":"Chami I, Ying Z, R\u00e9 C, Leskovec J (2019) Hyperbolic graph convolutional neural networks. In: Advances in neural information processing systems, pp 4869\u20134880"},{"key":"774_CR8","unstructured":"Cho H, DeMeo B, Peng J, Berger B (2019) Large-margin classification in hyperbolic space. In: The 22nd international conference on artificial intelligence and statistics, pp 1832\u20131840"},{"key":"774_CR9","first-page":"4460","volume":"80","author":"C De Sa","year":"2018","unstructured":"De Sa C, Gu A, R\u00e9 C, Sala F (2018) Representation tradeoffs for hyperbolic embeddings. Proc Mach Learn Res 80:4460","journal-title":"Proc Mach Learn Res"},{"key":"774_CR10","unstructured":"Ganea OE, B\u00e9cigneul G, Hofmann T (2018) Hyperbolic entailment cones for learning hierarchical embeddings. arXiv preprint arXiv:1804.01882"},{"key":"774_CR11","doi-asserted-by":"crossref","unstructured":"Ghosh S, Viswanath B, Kooti F, Sharma NK, Korlam G, Benevenuto F, Ganguly N, Gummadi KP (2012) Understanding and combating link farming in the twitter social network. In: Proceedings of the 21st international conference on world wide web, pp 61\u201370","DOI":"10.1145\/2187836.2187846"},{"key":"774_CR12","unstructured":"Goyal P, Kamra N, He X, Liu Y (2018) DynGEM: Deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273"},{"key":"774_CR13","doi-asserted-by":"crossref","unstructured":"Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855\u2013864","DOI":"10.1145\/2939672.2939754"},{"issue":"1","key":"774_CR14","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1093\/biomet\/58.1.83","volume":"58","author":"AG Hawkes","year":"1971","unstructured":"Hawkes AG (1971) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1):83\u201390","journal-title":"Biometrika"},{"issue":"1","key":"774_CR15","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/0378-8733(89)90017-8","volume":"11","author":"NP Hummon","year":"1989","unstructured":"Hummon NP, Dereian P (1989) Connectivity in a citation network: the development of DNA theory. Soc Netw 11(1):39\u201363","journal-title":"Soc Netw"},{"key":"774_CR16","doi-asserted-by":"crossref","unstructured":"Jin D, Heimann M, Rossi RA, Koutra D (2019) Node2bits: compact time-and attribute-aware node representations for user stitching. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 483\u2013506","DOI":"10.1007\/978-3-030-46150-8_29"},{"key":"774_CR17","unstructured":"Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907"},{"key":"774_CR18","unstructured":"Knyazev B, Augusta C, Taylor GW (2019) Learning temporal attention in dynamic graphs with bilinear interactions. arXiv preprint arXiv:1909.10367"},{"issue":"3","key":"774_CR19","doi-asserted-by":"publisher","first-page":"036106","DOI":"10.1103\/PhysRevE.82.036106","volume":"82","author":"D Krioukov","year":"2010","unstructured":"Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Bogun\u00e1 M (2010) Hyperbolic geometry of complex networks. Phys Rev E 82(3):036106","journal-title":"Phys Rev E"},{"key":"774_CR20","doi-asserted-by":"crossref","unstructured":"Li AQ, Ahmed A, Ravi S, Smola AJ (2014) Reducing the sampling complexity of topic models. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 891\u2013900","DOI":"10.1145\/2623330.2623756"},{"key":"774_CR21","doi-asserted-by":"publisher","first-page":"29219","DOI":"10.1109\/ACCESS.2018.2839770","volume":"6","author":"T Li","year":"2018","unstructured":"Li T, Zhang J, Philip SY, Zhang Y, Yan Y (2018) Deep dynamic network embedding for link prediction. IEEE Access 6:29219\u201329230","journal-title":"IEEE Access"},{"key":"774_CR22","first-page":"4261","volume":"33","author":"Z Li","year":"2019","unstructured":"Li Z, Zhang L, Song G (2019) Sepne: bringing separability to network embedding. Proc AAAI Conf Artif Intell 33:4261\u20134268","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"774_CR23","unstructured":"Liu Q, Nickel M, Kiela D (2019) Hyperbolic graph neural networks. In: Advances in neural information processing systems, pp 8228\u20138239"},{"issue":"1","key":"774_CR24","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1080\/0022250X.1971.9989788","volume":"1","author":"F Lorrain","year":"1971","unstructured":"Lorrain F, White HC (1971) Structural equivalence of individuals in social networks. J Math Sociol 1(1):49\u201380","journal-title":"J Math Sociol"},{"key":"774_CR25","doi-asserted-by":"crossref","unstructured":"Lu Y, Wang X, Shi C, Yu PS, Ye Y (2019) Temporal network embedding with micro-and macro-dynamics. In: Proceedings of the 28th ACM international conference on information and knowledge management, pp 469\u2013478","DOI":"10.1145\/3357384.3357943"},{"key":"774_CR26","unstructured":"McDonald D, He S (2019) HEAT: hyperbolic embedding of attributed networks. arXiv preprint arXiv:1903.03036"},{"key":"774_CR27","unstructured":"Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp 3111\u20133119"},{"issue":"1","key":"774_CR28","doi-asserted-by":"publisher","first-page":"1615","DOI":"10.1038\/s41467-017-01825-5","volume":"8","author":"A Muscoloni","year":"2017","unstructured":"Muscoloni A, Thomas JM, Ciucci S, Bianconi G, Cannistraci CV (2017) Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat Commun 8(1):1615","journal-title":"Nat Commun"},{"key":"774_CR29","doi-asserted-by":"crossref","unstructured":"Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-time dynamic network embeddings. In: Companion proceedings of the the web conference","DOI":"10.1145\/3184558.3191526"},{"key":"774_CR30","unstructured":"Nickel M, Kiela D (2017) Poincar\u00e9 embeddings for learning hierarchical representations. In: Advances in neural information processing systems, pp 6338\u20136347"},{"key":"774_CR31","doi-asserted-by":"crossref","unstructured":"Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1105\u20131114","DOI":"10.1145\/2939672.2939751"},{"key":"774_CR32","doi-asserted-by":"crossref","unstructured":"Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Leisersen CE (2019) Evolvegcn: evolving graph convolutional networks for dynamic graphs. arXiv preprint arXiv:1902.10191","DOI":"10.1609\/aaai.v34i04.5984"},{"key":"774_CR33","doi-asserted-by":"crossref","unstructured":"Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701\u2013710","DOI":"10.1145\/2623330.2623732"},{"key":"774_CR34","doi-asserted-by":"crossref","unstructured":"Rowe R, Creamer G, Hershkop S, Stolfo SJ (2007) Automated social hierarchy detection through email network analysis. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on web mining and social network analysis, pp 109\u2013117","DOI":"10.1145\/1348549.1348562"},{"key":"774_CR35","doi-asserted-by":"crossref","unstructured":"Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519\u2013527","DOI":"10.1145\/3336191.3371845"},{"issue":"1","key":"774_CR36","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/BF02289451","volume":"31","author":"PH Sch\u00f6nemann","year":"1966","unstructured":"Sch\u00f6nemann PH (1966) A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1):1\u201310","journal-title":"Psychometrika"},{"key":"774_CR37","doi-asserted-by":"crossref","unstructured":"Singer U, Guy I, Radinsky K (2019) Node embedding over temporal graphs. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19, pp 4605\u20134612","DOI":"10.24963\/ijcai.2019\/640"},{"key":"774_CR38","doi-asserted-by":"crossref","unstructured":"Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) LINE: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, pp 1067\u20131077","DOI":"10.1145\/2736277.2741093"},{"key":"774_CR39","unstructured":"Tong Z, Liang Y, Sun C, Li X, Rosenblum D, Lim A (2020a) Digraph inception convolutional networks. Advances in neural information processing systems"},{"key":"774_CR40","unstructured":"Tong Z, Liang Y, Sun C, Rosenblum DS, Lim A (2020b) Directed graph convolutional network. arXiv preprint arXiv:2004.13970"},{"key":"774_CR41","unstructured":"Trivedi R, Farajtabar M, Biswal P, Zha H (2019) DyRep: learning representations over dynamic graphs. In: International conference on learning representations"},{"key":"774_CR42","unstructured":"Veli\u010dkovi\u0107 P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:1710.10903"},{"key":"774_CR43","doi-asserted-by":"crossref","unstructured":"Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1225\u20131234","DOI":"10.1145\/2939672.2939753"},{"key":"774_CR44","doi-asserted-by":"crossref","unstructured":"Wang L, Lu Y, Huang C, Vosoughi S (2020) Embedding node structural role identity into hyperbolic space. In: Proceedings of the 29th ACM international conference on information and knowledge management, pp 2253\u20132256","DOI":"10.1145\/3340531.3412102"},{"key":"774_CR45","doi-asserted-by":"crossref","unstructured":"Wang L, Gao C, Huang C, Liu R, Ma W, Vosoughi S (2021) Embedding heterogeneous networks into hyperbolic space without meta-path. In: Proceedings of the AAAI conference on artificial intelligence","DOI":"10.1609\/aaai.v35i11.17217"},{"key":"774_CR46","doi-asserted-by":"crossref","unstructured":"Wang S, Tang J, Aggarwal C, Chang Y, Liu H (2017) Signed network embedding in social media. In: Proceedings of the 2017 SIAM international conference on data mining","DOI":"10.1137\/1.9781611974973.37"},{"key":"774_CR47","first-page":"5337","volume":"33","author":"X Wang","year":"2019","unstructured":"Wang X, Zhang Y, Shi C (2019) Hyperbolic heterogeneous information network embedding. Proc AAAI Conf Artif Intell 33:5337\u20135344","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"774_CR48","unstructured":"Wilson B, Leimeister M (2018) Gradient descent in hyperbolic space. arXiv preprint arXiv:1805.08207"},{"key":"774_CR49","doi-asserted-by":"crossref","unstructured":"Zhang J, Ackerman MS, Adamic L (2007) Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th international conference on world wide web, pp 221\u2013230","DOI":"10.1145\/1242572.1242603"},{"key":"774_CR50","unstructured":"Zhang Y, Wang X, Jiang X, Shi C, Ye Y (2019) Hyperbolic graph attention network. arXiv preprint arXiv:1912.03046"},{"key":"774_CR51","doi-asserted-by":"crossref","unstructured":"Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network embedding by modeling triadic closure process. In: Thirty-second AAAI conference on artificial intelligence","DOI":"10.1609\/aaai.v32i1.11257"},{"key":"774_CR52","doi-asserted-by":"crossref","unstructured":"Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding temporal network via neighborhood formation. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2857\u20132866","DOI":"10.1145\/3219819.3220054"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00774-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-021-00774-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00774-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T07:37:37Z","timestamp":1672558657000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-021-00774-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,23]]},"references-count":52,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2021,9]]}},"alternative-id":["774"],"URL":"https:\/\/doi.org\/10.1007\/s10618-021-00774-4","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2021,6,23]]},"assertion":[{"value":"16 June 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 June 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 June 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}