{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T07:22:27Z","timestamp":1721805747752},"reference-count":39,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2021,7,14]],"date-time":"2021-07-14T00:00:00Z","timestamp":1626220800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,7,14]],"date-time":"2021-07-14T00:00:00Z","timestamp":1626220800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1007\/s10618-021-00770-8","type":"journal-article","created":{"date-parts":[[2021,7,14]],"date-time":"2021-07-14T05:02:55Z","timestamp":1626238975000},"page":"2089-2111","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Structure learning for relational logistic regression: an ensemble approach"],"prefix":"10.1007","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7364-7097","authenticated-orcid":false,"given":"Nandini","family":"Ramanan","sequence":"first","affiliation":[]},{"given":"Gautam","family":"Kunapuli","sequence":"additional","affiliation":[]},{"given":"Tushar","family":"Khot","sequence":"additional","affiliation":[]},{"given":"Bahare","family":"Fatemi","sequence":"additional","affiliation":[]},{"given":"Seyed Mehran","family":"Kazemi","sequence":"additional","affiliation":[]},{"given":"David","family":"Poole","sequence":"additional","affiliation":[]},{"given":"Kristian","family":"Kersting","sequence":"additional","affiliation":[]},{"given":"Sriraam","family":"Natarajan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,14]]},"reference":[{"key":"770_CR1","doi-asserted-by":"crossref","unstructured":"Blockeel H (1999) Top\u2013down induction of first order logical decision trees. AI Commun 12(1\u20132):119\u2013120","DOI":"10.1016\/S0004-3702(98)00034-4"},{"key":"770_CR2","unstructured":"Craven M, McCallum A, PiPasquo D, Mitchell T, Freitag D (1998) Learning to extract symbolic knowledge from the world wide web. Proceedings of the 15th AAAI conference on artificial intelligence, pp 509\u2013516"},{"key":"770_CR3","doi-asserted-by":"crossref","unstructured":"Dietterich TG, Ashenfelter A, Bulatov Y (2004) Training conditional random fields via gradient tree boosting. In: Proceedings of the twenty\u2013first international conference on machine learning, p 28","DOI":"10.1145\/1015330.1015428"},{"key":"770_CR4","doi-asserted-by":"crossref","unstructured":"Domingos P, Lowd D (2009) Markov logic: an interface layer for artificial intelligence, vol 3. Morgan & Claypool Publishers","DOI":"10.2200\/S00206ED1V01Y200907AIM007"},{"key":"770_CR5","unstructured":"Fatemi B, Kazemi SM, Poole D (2016) A learning algorithm for relational logistic regression: preliminary results. arXiv preprint arXiv:1606.08531"},{"key":"770_CR6","doi-asserted-by":"crossref","unstructured":"Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat, pp 1189\u20131232","DOI":"10.1214\/aos\/1013203451"},{"key":"770_CR7","doi-asserted-by":"crossref","unstructured":"Gutmann B, Kersting K (2006) Tildecrf: conditional random fields for logical sequences. In: European conference on machine learning, Springer, Berlin, pp 174\u2013185","DOI":"10.1007\/11871842_20"},{"key":"770_CR8","doi-asserted-by":"crossref","unstructured":"Getoor L, Taskar B, eds. (2007) Introduction to statistical relational learning. MIT Press, Cambridge","DOI":"10.7551\/mitpress\/7432.001.0001"},{"issue":"4","key":"770_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2827872","volume":"5","author":"FM Harper","year":"2015","unstructured":"Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Systems 5(4):1\u201319","journal-title":"ACM Trans Interact Intell Systems"},{"key":"770_CR10","doi-asserted-by":"crossref","unstructured":"Heckerman D, Meek C, Koller D (2007) Probabilistic entity\u2013relationship models, PRMs, and plate models. Introduction to statistical relational learning pp 201\u2013238","DOI":"10.7551\/mitpress\/7432.003.0009"},{"key":"770_CR11","doi-asserted-by":"crossref","unstructured":"Huynh TN, Mooney RJ (2008) Discriminative structure and parameter learning for markov logic networks. In: Proceedings of the 25th international conference on machine learning, pp 416\u2013423","DOI":"10.1145\/1390156.1390209"},{"key":"770_CR12","unstructured":"Kazemi SM, Poole D (2018) Relnn: a deep neural model for relational learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 32"},{"key":"770_CR13","unstructured":"Kazemi SM, Buchman D, Kersting K, Natarajan S, Poole D (2014a) Relational logistic regression: the directed analog of markov logic networks. In: AAAI workshop: statistical relational artificial intelligence, Citeseer"},{"key":"770_CR14","doi-asserted-by":"crossref","unstructured":"Kersting K, De Raedt L (2007) Bayesian logic programming: theory and tool. In: Taskar B, Getoor L (ed). An introduction to statistical relational learning, MIT Press","DOI":"10.7551\/mitpress\/7432.003.0012"},{"key":"770_CR15","doi-asserted-by":"crossref","unstructured":"Kersting K, Driessens K (2008) Non\u2013parametric policy gradients: a unified treatment of propositional and relational domains. In: Proceedings of the 25th international conference on machine learning, pp 456\u2013463","DOI":"10.1145\/1390156.1390214"},{"key":"770_CR16","doi-asserted-by":"crossref","unstructured":"Khot T, Natarajan S, Kersting K, Shavlik J (2011) Learning markov logic networks via functional gradient boosting. In: 2011 IEEE 11th international conference on data mining, IEEE, pp 320\u2013329","DOI":"10.1109\/ICDM.2011.87"},{"key":"770_CR17","unstructured":"Kimmig A, Bach S, Broecheler M, Huang B, Getoor L (2012) A short introduction to probabilistic soft logic. In: Proceedings of the NIPS workshop on probabilistic programming: foundations and applications, pp 1\u20134"},{"key":"770_CR18","doi-asserted-by":"crossref","unstructured":"Kok S, Domingos P (2005) Learning the structure of markov logic networks. In: Proceedings of the 22nd international conference on machine learning, pp 441\u2013448","DOI":"10.1145\/1102351.1102407"},{"key":"770_CR19","doi-asserted-by":"crossref","unstructured":"Kok S, Domingos P (2009) Learning markov logic network structure via hypergraph lifting. In: Proceedings of the 26th annual international conference on machine learning, pp 505\u2013512","DOI":"10.1145\/1553374.1553440"},{"key":"770_CR20","doi-asserted-by":"crossref","unstructured":"Koller D (1999) Probabilistic relational models. In: International conference on inductive logic programming, Springer, pp 3\u201313","DOI":"10.1007\/3-540-48751-4_1"},{"key":"770_CR21","doi-asserted-by":"crossref","unstructured":"Lowd D, Domingos P (2007) Efficient weight learning for markov logic networks. In: European conference on principles of data mining and knowledge discovery, Springer, pp 200\u2013211","DOI":"10.1007\/978-3-540-74976-9_21"},{"key":"770_CR22","doi-asserted-by":"crossref","unstructured":"Malec M, Khot T, Nagy J, Blasch E, Natarajan S (2016) Inductive logic programming meets relational databases: an application to statistical relational learning","DOI":"10.1007\/978-3-319-63342-8_2"},{"issue":"3","key":"770_CR23","doi-asserted-by":"publisher","first-page":"285","DOI":"10.1016\/0377-2217(84)90282-0","volume":"16","author":"P McCullagh","year":"1984","unstructured":"McCullagh P (1984) Generalized linear models. Eur J Oper Res 16(3):285\u2013292","journal-title":"Eur J Oper Res"},{"key":"770_CR24","doi-asserted-by":"crossref","unstructured":"Mihalkova L, Mooney RJ (2007) Bottom\u2013up learning of markov logic network structure. In: Proceedings of the 24th international conference on machine learning, pp 625\u2013632","DOI":"10.1145\/1273496.1273575"},{"key":"770_CR25","doi-asserted-by":"crossref","unstructured":"Muggleton S (1995) Inverse entailment and Progol. New Gener Comput 13(3\u20134):245\u2013286","DOI":"10.1007\/BF03037227"},{"key":"770_CR26","doi-asserted-by":"crossref","unstructured":"Muggleton S (1996) Learning from positive data. In: International conference on inductive logic programming, Springer, pp 358\u2013376","DOI":"10.1007\/3-540-63494-0_65"},{"key":"770_CR27","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1016\/0743-1066(94)90035-3","volume":"19","author":"S Muggleton","year":"1994","unstructured":"Muggleton S, De Raedt L (1994) Inductive logic programming: theory and methods. J Log Program 19:629\u2013679","journal-title":"J Log Program"},{"issue":"1","key":"770_CR28","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/s10472-009-9138-5","volume":"54","author":"S Natarajan","year":"2008","unstructured":"Natarajan S, Tadepalli P, Dietterich TG, Fern A (2008) Learning first-order probabilistic models with combining rules. Ann Math Artif Intell 54(1):223\u2013256","journal-title":"Ann Math Artif Intell"},{"key":"770_CR29","unstructured":"Natarajan S, Joshi S, Tadepalli P, Kersting K, Shavlik J (2011) Imitation learning in relational domains: a functional\u2013gradient boosting approach. In: IJCAI proceedings\u2013international joint conference on artificial intelligence, Citeseer, vol 22, p 1414"},{"issue":"1","key":"770_CR30","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1007\/s10994-011-5244-9","volume":"86","author":"S Natarajan","year":"2012","unstructured":"Natarajan S, Khot T, Kersting K, Gutmann B, Shavlik J (2012) Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach Learn 86(1):25\u201356","journal-title":"Mach Learn"},{"key":"770_CR31","doi-asserted-by":"crossref","unstructured":"Natarajan S, Prabhakar A, Ramanan N, Bagilone A, Siek K, Connelly K (2017) Boosting for postpartum depression prediction. In: 2017 IEEE\/ACM international conference on connected health: applications, systems and engineering technologies (CHASE), IEEE, pp 232\u201324","DOI":"10.1109\/CHASE.2017.82"},{"key":"770_CR32","doi-asserted-by":"crossref","unstructured":"Poole D, Buchman D, Kazemi SM, Kersting K, Natarajan S (2014) Population size extrapolation in relational probabilistic modelling. In: International conference on scalable uncertainty management, Springer, pp 292\u2013305","DOI":"10.1007\/978-3-319-11508-5_25"},{"key":"770_CR33","unstructured":"Popescul A, Ungar LH (2003) Structural logistic regression for link analysis. Departmental Papers (CIS) p 133"},{"issue":"2","key":"770_CR34","first-page":"1","volume":"10","author":"LD Raedt","year":"2016","unstructured":"Raedt LD, Kersting K, Natarajan S, Poole D (2016) Statistical relational artificial intelligence: logic, probability, and computation. Synth Lect Artif Intell Mach Learn 10(2):1\u2013189","journal-title":"Synth Lect Artif Intell Mach Learn"},{"issue":"1\u20132","key":"770_CR35","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s10994-006-5833-1","volume":"62","author":"M Richardson","year":"2006","unstructured":"Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1\u20132):107\u2013136","journal-title":"Mach Learn"},{"key":"770_CR36","unstructured":"Srinivasan A (2001) The aleph manual. http:\/\/web.comlab.ox.ac.uk\/oucl\/research\/areas\/machlearn\/Aleph\/"},{"key":"770_CR37","doi-asserted-by":"crossref","unstructured":"Taskar B, Abbeel P, Wong MF, Koller D (2007) Relational markov networks. Introduction to statistical relational learning, pp 175\u2013200","DOI":"10.7551\/mitpress\/7432.003.0008"},{"key":"770_CR38","doi-asserted-by":"crossref","unstructured":"Yang S, Khot T, Kersting K, Kunapuli G, Hauser K, Natarajan S (2014) Learning from imbalanced data in relational domains: a soft margin approach. In: 2014 IEEE international conference on data mining, IEEE, pp 1085\u20131090","DOI":"10.1109\/ICDM.2014.152"},{"key":"770_CR39","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.knosys.2017.08.017","volume":"136","author":"S Yang","year":"2017","unstructured":"Yang S, Korayem M, AlJadda K, Grainger T, Natarajan S (2017) Combining content-based and collaborative filtering for job recommendation system: a cost-sensitive statistical relational learning approach. Knowl-Based Syst 136:37\u201345","journal-title":"Knowl-Based Syst"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00770-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-021-00770-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00770-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T00:52:51Z","timestamp":1699231971000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-021-00770-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,14]]},"references-count":39,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2021,9]]}},"alternative-id":["770"],"URL":"https:\/\/doi.org\/10.1007\/s10618-021-00770-8","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,14]]},"assertion":[{"value":"15 April 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 May 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 July 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}