{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:19:54Z","timestamp":1740122394889,"version":"3.37.3"},"reference-count":74,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"crossref","award":["DP190101079"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"crossref"}]},{"name":"ARC Future Fellow Grant","award":["FT190100734"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1007\/s10618-021-00750-y","type":"journal-article","created":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T10:05:13Z","timestamp":1617271513000},"page":"1163-1224","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Homophily outlier detection in non-IID categorical data"],"prefix":"10.1007","volume":"35","author":[{"given":"Guansong","family":"Pang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1562-9429","authenticated-orcid":false,"given":"Longbing","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Ling","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,4,1]]},"reference":[{"key":"750_CR1","doi-asserted-by":"crossref","unstructured":"Aggarwal CC (2017a) Outlier detection in categorical, text, and mixed attribute data. In: Outlier analysis, pp 249\u2013272. Springer, Berlin","DOI":"10.1007\/978-3-319-47578-3_8"},{"key":"750_CR2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-47578-3","volume-title":"Outlier analysis","author":"CC Aggarwal","year":"2017","unstructured":"Aggarwal CC (2017b) Outlier analysis, second edn. Springer, Berlin","edition":"second"},{"key":"750_CR3","doi-asserted-by":"crossref","unstructured":"Akoglu L, Tong H, Vreeken J, Faloutsos C (2012) Fast and reliable anomaly detection in categorical data. In: CIKM, pp 415\u2013424. ACM","DOI":"10.1145\/2396761.2396816"},{"issue":"3","key":"750_CR4","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1007\/s10618-014-0365-y","volume":"29","author":"L Akoglu","year":"2015","unstructured":"Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data Min Knowl Disc 29(3):626\u2013688","journal-title":"Data Min Knowl Disc"},{"key":"750_CR5","doi-asserted-by":"crossref","unstructured":"Andersen R, Chellapilla K (2009) Finding dense subgraphs with size bounds. In: Algorithms and models for the web-graph, pp 25\u201337","DOI":"10.1007\/978-3-540-95995-3_3"},{"issue":"16\u201317","key":"750_CR6","doi-asserted-by":"publisher","first-page":"1837","DOI":"10.1016\/j.artint.2008.07.004","volume":"172","author":"F Angiulli","year":"2008","unstructured":"Angiulli F, Palopoli L et al (2008) Outlier detection using default reasoning. Artif Intell 172(16\u201317):1837\u20131872","journal-title":"Artif Intell"},{"issue":"1","key":"750_CR7","first-page":"7","volume":"34","author":"F Angiulli","year":"2009","unstructured":"Angiulli F, Fassetti F, Palopoli L (2009) Detecting outlying properties of exceptional objects. ACM Trans Datab Syst 34(1):7","journal-title":"ACM Trans Datab Syst"},{"issue":"15","key":"750_CR8","doi-asserted-by":"publisher","first-page":"1247","DOI":"10.1016\/j.artint.2010.07.006","volume":"174","author":"F Angiulli","year":"2010","unstructured":"Angiulli F, Ben-Eliyahu-Zohary R, Palopoli L (2010) Outlier detection for simple default theories. Artif Intell 174(15):1247\u20131253","journal-title":"Artif Intell"},{"key":"750_CR9","doi-asserted-by":"crossref","unstructured":"Azmandian F, Yilmazer A, Dy JG, Aslam J, Kaeli DR, et al (2012) GPU-accelerated feature selection for outlier detection using the local kernel density ratio. In ICDM, pp 51\u201360. IEEE","DOI":"10.1109\/ICDM.2012.51"},{"key":"750_CR10","doi-asserted-by":"crossref","unstructured":"Boriah S, Chandola V, Kumar V (2008) Similarity measures for categorical data: a comparative evaluation. In: SDM, pp 243\u2013254. SIAM","DOI":"10.1137\/1.9781611972788.22"},{"issue":"2","key":"750_CR11","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1145\/335191.335388","volume":"29","author":"MM Breunig","year":"2000","unstructured":"Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. ACM SIGMOD Record 29(2):93\u2013104","journal-title":"ACM SIGMOD Record"},{"issue":"2","key":"750_CR12","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1145\/253262.253327","volume":"26","author":"S Brin","year":"1997","unstructured":"Brin S, Motwani R, Silverstein C (1997) Beyond market baskets: generalizing association rules to correlations. ACM SIGMOD Record 26(2):265\u2013276","journal-title":"ACM SIGMOD Record"},{"issue":"4","key":"750_CR13","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1007\/s10618-015-0444-8","volume":"30","author":"GO Campos","year":"2016","unstructured":"Campos GO, Zimek A, Sander J, Campello RJGB, Micenkov\u00e1 B, Schubert E, Assent I, Houle ME (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min Knowl Disc 30(4):891\u2013927","journal-title":"Data Min Knowl Disc"},{"issue":"9","key":"750_CR14","doi-asserted-by":"publisher","first-page":"1358","DOI":"10.1093\/comjnl\/bxt084","volume":"57","author":"L Cao","year":"2014","unstructured":"Cao L (2014) Non-iidness learning in behavioral and social data. Comput J 57(9):1358\u20131370","journal-title":"Comput J"},{"issue":"2","key":"750_CR15","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.ipm.2014.08.007","volume":"51","author":"L Cao","year":"2015","unstructured":"Cao L (2015) Coupling learning of complex interactions. Inf Process Manag 51(2):167\u2013186","journal-title":"Inf Process Manag"},{"key":"750_CR16","doi-asserted-by":"crossref","unstructured":"Cao L (2018) Data science thinking: the next scientific. Technological and Economic Revolution, Springer, Berlin","DOI":"10.1007\/978-3-319-95092-1"},{"issue":"8","key":"750_CR17","doi-asserted-by":"publisher","first-page":"1378","DOI":"10.1109\/TKDE.2011.129","volume":"24","author":"L Cao","year":"2012","unstructured":"Cao L, Yuming O, Philip SY (2012) Coupled behavior analysis with applications. IEEE Trans Knowl Data Eng 24(8):1378\u20131392","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"750_CR18","doi-asserted-by":"publisher","first-page":"156","DOI":"10.1016\/j.artint.2016.03.001","volume":"235","author":"L Cao","year":"2016","unstructured":"Cao L, Dong X, Zheng Z (2016) e-nsp: Efficient negative sequential pattern mining. Artif Intell 235:156\u2013182","journal-title":"Artif Intell"},{"issue":"3","key":"750_CR19","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1145\/1541880.1541882","volume":"41","author":"V Chandola","year":"2009","unstructured":"Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15","journal-title":"ACM Comput Surv"},{"key":"750_CR20","doi-asserted-by":"crossref","unstructured":"Chau DH, Nachenberg C, Wilhelm J, Wright A, Faloutsos C (2011) Polonium: Tera-scale graph mining and inference for malware detection. In: SDM, pp 131\u2013142. SIAM","DOI":"10.1137\/1.9781611972818.12"},{"key":"750_CR21","doi-asserted-by":"crossref","unstructured":"Das K, Schneider J (2007) Detecting anomalous records in categorical datasets. In: KDD, pp 220\u2013229. ACM","DOI":"10.1145\/1281192.1281219"},{"issue":"1","key":"750_CR22","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1214\/aoap\/1177005980","volume":"1","author":"P Diaconis","year":"1991","unstructured":"Diaconis P, Stroock D (1991) Geometric bounds for eigenvalues of markov chains. Ann Appl Probab 1(1):36\u201361","journal-title":"Ann Appl Probab"},{"key":"750_CR23","doi-asserted-by":"crossref","unstructured":"Emmott AF, Das S, Dietterich T, Fern A, Wong W-K (2013) Systematic construction of anomaly detection benchmarks from real data. In: KDD workshop, pp 16\u201321. ACM","DOI":"10.1145\/2500853.2500858"},{"key":"750_CR24","unstructured":"Fan X, Xu RYD, Cao L (2016) Copula mixed-membership stochastic blockmodel. In: IJCAI, pp 1462\u20131468"},{"issue":"1","key":"750_CR25","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1214\/aoap\/1177005981","volume":"1","author":"JA Fill","year":"1991","unstructured":"Fill JA (1991) Eigenvalue bounds on convergence to stationarity for nonreversible markov chains, with an application to the exclusion process. Ann Appl Probab 1(1):62\u201387","journal-title":"Ann Appl Probab"},{"key":"750_CR26","doi-asserted-by":"publisher","first-page":"a2338","DOI":"10.1136\/bmj.a2338","volume":"337","author":"JH Fowler","year":"2008","unstructured":"Fowler JH, Christakis NA (2008) Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study. BMJ 337:a2338","journal-title":"BMJ"},{"issue":"7","key":"750_CR27","doi-asserted-by":"publisher","first-page":"1022","DOI":"10.1109\/TKDE.2010.160","volume":"23","author":"MC Ganiz","year":"2011","unstructured":"Ganiz MC, George C, Pottenger WM (2011) Higher order naive bayes: a novel non-iid approach to text classification. IEEE Trans Knowl Data Eng 23(7):1022\u20131034","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"750_CR28","doi-asserted-by":"crossref","unstructured":"Giacometti A, Soulet A (2016) Anytime algorithm for frequent pattern outlier detection. Int J Data Sci Anal, pp 1\u201312","DOI":"10.1007\/978-3-319-31750-2_16"},{"issue":"6","key":"750_CR29","doi-asserted-by":"publisher","first-page":"065102","DOI":"10.1103\/PhysRevE.78.065102","volume":"78","author":"J G\u00f3mez-Garde\u00f1es","year":"2008","unstructured":"G\u00f3mez-Garde\u00f1es J, Latora V (2008) Entropy rate of diffusion processes on complex networks. Phys Rev E 78(6):065102","journal-title":"Phys Rev E"},{"key":"750_CR30","unstructured":"Guha S, Mishra N, Roy G, Schrijvers O (2016) Robust random cut forest based anomaly detection on streams. In: ICML, pp 2712\u20132721"},{"issue":"1","key":"750_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-031-01905-0","volume":"5","author":"M Gupta","year":"2014","unstructured":"Gupta M, Gao J, Aggarwal C, Han J (2014) Outlier detection for temporal data. Synth Lect Data Min Knowl Discov 5(1):1\u2013129","journal-title":"Synth Lect Data Min Knowl Discov"},{"issue":"1","key":"750_CR32","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10\u201318","journal-title":"ACM SIGKDD Explor Newsl"},{"issue":"2","key":"750_CR33","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1023\/A:1010920819831","volume":"45","author":"DJ Hand","year":"2001","unstructured":"Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 45(2):171\u2013186","journal-title":"Mach Learn"},{"key":"750_CR34","doi-asserted-by":"crossref","unstructured":"He J (2017) Learning from data heterogeneity: algorithms and applications. In: IJCAI, pp 5126\u20135130","DOI":"10.24963\/ijcai.2017\/735"},{"issue":"6","key":"750_CR35","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1002\/sam.10091","volume":"3","author":"J He","year":"2010","unstructured":"He J, Carbonell J (2010) Coselection of features and instances for unsupervised rare category analysis. Stat Anal Data Min 3(6):417\u2013430","journal-title":"Stat Anal Data Min"},{"issue":"1","key":"750_CR36","doi-asserted-by":"publisher","first-page":"103","DOI":"10.2298\/CSIS0501103H","volume":"2","author":"Z He","year":"2005","unstructured":"He Z, Xu X, Huang ZJ, Deng S (2005) FP-outlier: frequent pattern based outlier detection. Comput Sci Inf Syst 2(1):103\u2013118","journal-title":"Comput Sci Inf Syst"},{"issue":"3","key":"750_CR37","doi-asserted-by":"publisher","first-page":"289","DOI":"10.1109\/34.990132","volume":"24","author":"TK Ho","year":"2002","unstructured":"Ho TK, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289\u2013300","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"5","key":"750_CR38","doi-asserted-by":"publisher","first-page":"1017","DOI":"10.1109\/TNNLS.2016.2526063","volume":"28","author":"D Ienco","year":"2017","unstructured":"Ienco D, Pensa RG, Meo R (2017) A semisupervised approach to the detection and characterization of outliers in categorical data. IEEE Trans Neural Netw Learn Syst 28(5):1017\u20131029","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"750_CR39","doi-asserted-by":"crossref","unstructured":"Jian S, Cao L, Pang G, Lu K, Gao H (2017) Embedding-based representation of categorical data by hierarchical value coupling learning. In: IJCAI, pp 1937\u20131943","DOI":"10.24963\/ijcai.2017\/269"},{"key":"750_CR40","doi-asserted-by":"crossref","unstructured":"Khuller S, Barna S (2009) On finding dense subgraphs. Automata, Languages and Programming, pp 597\u2013608","DOI":"10.1007\/978-3-642-02927-1_50"},{"issue":"2","key":"750_CR41","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1007\/s10618-009-0148-z","volume":"20","author":"A Koufakou","year":"2010","unstructured":"Koufakou A, Georgiopoulos M (2010) A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes. Data Min Knowl Disc 20(2):259\u2013289","journal-title":"Data Min Knowl Disc"},{"issue":"3","key":"750_CR42","doi-asserted-by":"publisher","first-page":"697","DOI":"10.1007\/s10115-010-0343-7","volume":"29","author":"A Koufakou","year":"2011","unstructured":"Koufakou A, Secretan J, Georgiopoulos M (2011) Non-derivable itemsets for fast outlier detection in large high-dimensional categorical data. Knowl Inf Syst 29(3):697\u2013725","journal-title":"Knowl Inf Syst"},{"key":"750_CR43","doi-asserted-by":"crossref","unstructured":"Koutra D, Ke T-Y, Kang U, Chau D, Pao H-K, Faloutsos C (2011) Unifying guilt-by-association approaches: theorems and fast algorithms. In: Machine learning and knowledge discovery in databases, pp 245\u2013260","DOI":"10.1007\/978-3-642-23783-6_16"},{"issue":"2","key":"750_CR44","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1109\/TKDE.2014.2327034","volume":"27","author":"E Leyva","year":"2015","unstructured":"Leyva E, Gonz\u00e1lez A, Perez R (2015) A set of complexity measures designed for applying meta-learning to instance selection. IEEE Trans Knowl Data Eng 27(2):354\u2013367","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"750_CR45","unstructured":"Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2016) Feature selection: a data perspective. CoRR, arXiv:abs\/1601.07996"},{"key":"750_CR46","doi-asserted-by":"crossref","unstructured":"Liang J, Parthasarathy S (2016) Robust contextual outlier detection: Where context meets sparsity. In: Proceedings of the 25th ACM international on conference on information and knowledge management, pp 2167\u20132172. ACM","DOI":"10.1145\/2983323.2983660"},{"issue":"1","key":"750_CR47","doi-asserted-by":"publisher","first-page":"3:1","DOI":"10.1145\/2133360.2133363","volume":"6","author":"FT Liu","year":"2012","unstructured":"Liu FT, Ting KM, Zhou Z-H (2012) Isolation-based anomaly detection. ACM Trans Knowl Discov Data 6(1):3:1\u20133:39","journal-title":"ACM Trans Knowl Discov Data"},{"key":"750_CR48","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.ins.2014.07.015","volume":"286","author":"S Maldonado","year":"2014","unstructured":"Maldonado S, Weber R, Famili F (2014) Feature selection for high-dimensional class-imbalanced data sets using support vector machines. Inf Sci 286:228\u2013246","journal-title":"Inf Sci"},{"key":"750_CR49","doi-asserted-by":"crossref","unstructured":"McGlohon M, Bay S, Anderle MG, Steier DM, Faloutsos C (2009) SNARE: a link analytic system for graph labeling and risk detection. In: KDD, pp 1265\u20131274. ACM","DOI":"10.1145\/1557019.1557155"},{"issue":"1","key":"750_CR50","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1146\/annurev.soc.27.1.415","volume":"27","author":"M McPherson","year":"2001","unstructured":"McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Ann Rev Sociol 27(1):415\u2013444","journal-title":"Ann Rev Sociol"},{"key":"750_CR51","doi-asserted-by":"publisher","DOI":"10.1137\/1.9780898719512","volume-title":"Matrix analysis and applied linear algebra","author":"CD Meyer","year":"2000","unstructured":"Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM, Philadelphia"},{"issue":"2\u20133","key":"750_CR52","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1007\/s10618-005-0014-6","volume":"12","author":"ME Otey","year":"2006","unstructured":"Otey ME, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets. Data Min Knowl Disc 12(2\u20133):203\u2013228","journal-title":"Data Min Knowl Disc"},{"key":"750_CR53","unstructured":"Page L, Brin S, Motwani R, Winograd T (1998) The PageRank citation ranking: bringing order to the web. In: WWW conference, pp 161\u2013172"},{"key":"750_CR54","doi-asserted-by":"crossref","unstructured":"Pang G, Ting KM, Albrecht D (2015) LeSiNN: detecting anomalies by identifying least similar nearest neighbours. In: ICDM workshop, pp 623\u2013630. IEEE","DOI":"10.1109\/ICDMW.2015.62"},{"key":"750_CR55","unstructured":"Pang G, Cao L, Chen L (2016) Outlier detection in complex categorical data by modelling the feature value couplings. In IJCAI, pp 1902\u20131908"},{"key":"750_CR56","doi-asserted-by":"crossref","unstructured":"Pang G, Cao L, Chen L, Lian D, Liu H (2018) Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data. In: Thirty-second AAAI conference on artificial intelligence","DOI":"10.1609\/aaai.v32i1.11692"},{"key":"750_CR57","unstructured":"Pang G, Shen C, Cao L, van den Hengel A (2020) Deep learning for anomaly detection: a review. arXiv preprint arXiv:2007.02500"},{"issue":"4","key":"750_CR58","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1145\/2890508","volume":"10","author":"S Rayana","year":"2016","unstructured":"Rayana S, Akoglu L (2016) Less is more: building selective anomaly ensembles. ACM Trans Knowl Discov Data 10(4):42","journal-title":"ACM Trans Knowl Discov Data"},{"key":"750_CR59","doi-asserted-by":"crossref","unstructured":"Rayana S, Zhong W, Akoglu L (2016) Sequential ensemble learning for outlier detection: a bias-variance perspective. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 1167\u20131172. IEEE","DOI":"10.1109\/ICDM.2016.0154"},{"key":"750_CR60","doi-asserted-by":"crossref","unstructured":"Schubert E, Wojdanowski R, Zimek A, Kriegel H-P (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 2012 SIAM international conference on data mining, pp 1047\u20131058. SIAM","DOI":"10.1137\/1.9781611972825.90"},{"key":"750_CR61","doi-asserted-by":"crossref","unstructured":"Smets K, Vreeken J (2011) The odd one out: identifying and characterising anomalies. In: SDM, pp 109\u2013148. SIAM","DOI":"10.1137\/1.9781611972818.69"},{"issue":"2","key":"750_CR62","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/s10994-013-5422-z","volume":"95","author":"MR Smith","year":"2014","unstructured":"Smith MR, Martinez T, Giraud-Carrier C (2014) An instance level analysis of data complexity. Mach Learn 95(2):225\u2013256","journal-title":"Mach Learn"},{"key":"750_CR63","unstructured":"Sugiyama M, Borgwardt K (2013) Rapid distance-based outlier detection via sampling. In: NIPS, pp 467\u2013475"},{"issue":"2","key":"750_CR64","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-031-01902-9","volume":"3","author":"Y Sun","year":"2012","unstructured":"Sun Y, Han J (2012) Mining heterogeneous information networks: principles and methodologies. Synth Lect Data Min Knowl Discov 3(2):1\u2013159","journal-title":"Synth Lect Data Min Knowl Discov"},{"issue":"5","key":"750_CR65","doi-asserted-by":"publisher","first-page":"1171","DOI":"10.3233\/IDA-150764","volume":"19","author":"G Tang","year":"2015","unstructured":"Tang G, Pei J, Bailey J, Dong G (2015) Mining multidimensional contextual outliers from categorical relational data. Intell Data Anal 19(5):1171\u20131192","journal-title":"Intell Data Anal"},{"key":"750_CR66","doi-asserted-by":"crossref","unstructured":"Tang J, Gao H, Hu X, Liu H (2013) Exploiting homophily effect for trust prediction. In: WSDM, pp 53\u201362. ACM","DOI":"10.1145\/2433396.2433405"},{"issue":"1","key":"750_CR67","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1007\/s10994-012-5303-x","volume":"90","author":"KM Ting","year":"2013","unstructured":"Ting KM, Zhou GT, Liu FT, Tan SC (2013) Mass estimation. Mach Learn 90(1):127\u2013160","journal-title":"Mach Learn"},{"issue":"1","key":"750_CR68","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1007\/s10994-016-5586-4","volume":"106","author":"KM Ting","year":"2017","unstructured":"Ting KM, Washio T, Wells JR, Aryal S (2017) Defying the gravity of learning curve: a characteristic of nearest neighbour anomaly detectors. Mach Learn 106(1):55\u201391","journal-title":"Mach Learn"},{"key":"750_CR69","unstructured":"Wong W-K, Moore A, Cooper G, Wagner M (2003) Bayesian network anomaly pattern detection for disease outbreaks. In: ICML, pp 808\u2013815"},{"issue":"3","key":"750_CR70","doi-asserted-by":"publisher","first-page":"589","DOI":"10.1109\/TKDE.2011.261","volume":"25","author":"W Shu","year":"2013","unstructured":"Shu W, Wang S (2013) Information-theoretic outlier detection for large-scale categorical data. IEEE Trans Knowl Data Eng 25(3):589\u2013602","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"750_CR71","doi-asserted-by":"crossref","unstructured":"Zhang Q, Cao L, Zhu C, Li Z, Sun J (2018) Coupledcf: learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering. In: IJCAI\u20192018, pp 3662\u20133668","DOI":"10.24963\/ijcai.2018\/509"},{"key":"750_CR72","doi-asserted-by":"crossref","unstructured":"Zheng G, Brantley SL, Lauvaux T, Li Z (2017) Contextual spatial outlier detection with metric learning. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 2161\u20132170. ACM","DOI":"10.1145\/3097983.3098143"},{"key":"750_CR73","doi-asserted-by":"crossref","unstructured":"Zhou Z-H, Sun Y-Y, Li Y-F (2009) Multi-instance learning by treating instances as non-iid samples. In: ICML, pp 1249\u20131256. ACM","DOI":"10.1145\/1553374.1553534"},{"issue":"1","key":"750_CR74","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1145\/2594473.2594476","volume":"15","author":"A Zimek","year":"2013","unstructured":"Zimek A, Campello RJGB, Sander J (2013) Ensembles for unsupervised outlier detection: challenges and research questions. ACM SIGKDD Explor Newsl 15(1):11\u201322","journal-title":"ACM SIGKDD Explor Newsl"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00750-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10618-021-00750-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-021-00750-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T19:30:48Z","timestamp":1667071848000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10618-021-00750-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4,1]]},"references-count":74,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["750"],"URL":"https:\/\/doi.org\/10.1007\/s10618-021-00750-y","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"type":"print","value":"1384-5810"},{"type":"electronic","value":"1573-756X"}],"subject":[],"published":{"date-parts":[[2021,4,1]]},"assertion":[{"value":"12 September 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 March 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 April 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}