{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:50:30Z","timestamp":1728175830149},"reference-count":66,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2017,2,25]],"date-time":"2017-02-25T00:00:00Z","timestamp":1487980800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2017,11]]},"DOI":"10.1007\/s10618-017-0495-0","type":"journal-article","created":{"date-parts":[[2017,2,25]],"date-time":"2017-02-25T06:37:10Z","timestamp":1488004630000},"page":"1678-1705","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":114,"title":["Activity recognition in beach volleyball using a Deep Convolutional Neural Network"],"prefix":"10.1007","volume":"31","author":[{"given":"Thomas","family":"Kautz","sequence":"first","affiliation":[]},{"given":"Benjamin H.","family":"Groh","sequence":"additional","affiliation":[]},{"given":"Julius","family":"Hannink","sequence":"additional","affiliation":[]},{"given":"Ulf","family":"Jensen","sequence":"additional","affiliation":[]},{"given":"Holger","family":"Strubberg","sequence":"additional","affiliation":[]},{"given":"Bjoern M.","family":"Eskofier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,2,25]]},"reference":[{"issue":"3","key":"495_CR1","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1055\/s-2007-972623","volume":"18","author":"H Aagaard","year":"1997","unstructured":"Aagaard H, Scavenius M, J\u00f8rgensen U (1997) An epidemiological analysis of the injury pattern in indoor and in beach volleyball. Int J Sports Med 18(3):217\u2013221","journal-title":"Int J Sports Med"},{"key":"495_CR2","unstructured":"Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Man\u00e9 D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Vi\u00e9gas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. http:\/\/download.tensorflow.org\/paper\/whitepaper2015.pdf . Accessed 2 Dec 2015"},{"issue":"5","key":"495_CR3","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1136\/bjsm.37.5.384","volume":"37","author":"R Bahr","year":"2003","unstructured":"Bahr R, Holme I (2003) Risk factors for sports injuries\u2014a methodological approach. Br J Sports Med 37(5):384\u2013392","journal-title":"Br J Sports Med"},{"issue":"1","key":"495_CR4","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1177\/03635465030310010401","volume":"31","author":"R Bahr","year":"2003","unstructured":"Bahr R, Reeser JC (2003) Injuries among world-class professional beach volleyball players. The F\u00e9d\u00e9ration Internationale de Volleyball beach volleyball injury study. Am J Sports Med 31(1):119\u2013125","journal-title":"Am J Sports Med"},{"key":"495_CR5","doi-asserted-by":"crossref","unstructured":"Bailador G, Roggen D, Tr\u00f6ster G, Trivino G (2007) Real time gesture recognition using continuous time recurrent neural networks. In: Proceedings of the international conference on body area networks","DOI":"10.4108\/bodynets.2007.149"},{"key":"495_CR6","doi-asserted-by":"crossref","unstructured":"Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: Proceedings of the 2nd international ICST conference on body area networks (BODYNETS-07), Florence, Italy","DOI":"10.1007\/978-3-540-24646-6_1"},{"key":"495_CR7","volume-title":"Pattern recognition and machine learning.","author":"CM Bishop","year":"2006","unstructured":"Bishop CM (2006) Pattern recognition and machine learning. Springer, New York"},{"key":"495_CR8","doi-asserted-by":"crossref","unstructured":"Blank P, Ho\u00dfbach J, Schuldhaus D, Eskofier BM (2015) Sensor-based stroke detection and stroke type classification in table tennis. In: Proceedings of the ACM international symposium on wearable computers, Osaka, Japan, pp 93\u2013100","DOI":"10.1145\/2802083.2802087"},{"key":"495_CR9","unstructured":"Bosch Sensortec (2014a) BMA280\u2014digital, triaxial acceleration sensor, Data Sheet, Reutlingen, Germany. http:\/\/ae-bst.resource.bosch.com\/media\/_tech\/media\/datasheets\/BST-BMA280-DS000-11_published.pdf . Accessed 16 Nov 2015"},{"key":"495_CR10","unstructured":"Bosch Sensortec (2014b) BMG160\u2014digital, triaxial gyroscope sensor, data sheet, Reutlingen, Germany. http:\/\/ae-bst.resource.bosch.com\/media\/_tech\/media\/datasheets\/BST-BMG160-DS000-09.pdf . Accessed 16 Nov 2015"},{"key":"495_CR11","doi-asserted-by":"crossref","unstructured":"Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: 19th international conference on computational statistics, Physica-Verlag, Paris, France, pp 177\u2013186","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"495_CR12","unstructured":"Boureau Y, Ponce J, LeCun Y (2010) A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th international conference on machine learning (ICML-10)"},{"issue":"2","key":"495_CR13","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman L (1996) Bagging predictors. Mach Learn 24(2):123\u2013140","journal-title":"Mach Learn"},{"issue":"1","key":"495_CR14","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332","journal-title":"Mach Learn"},{"key":"495_CR15","volume-title":"Classification and regression trees","author":"L Breiman","year":"1984","unstructured":"Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca Raton"},{"key":"495_CR16","doi-asserted-by":"crossref","unstructured":"Bridle JS (1990) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Fogleman-Soulie F, Herault J (eds) Neurocomputing: algorithms, architectures and applications. Springer-Verlag Berlin, pp 227\u2013236","DOI":"10.1007\/978-3-642-76153-9_28"},{"key":"495_CR17","doi-asserted-by":"crossref","unstructured":"Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: delving deep into convolutional nets. arXiv:1405.3531v4","DOI":"10.5244\/C.28.6"},{"issue":"3","key":"495_CR18","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(3):321\u2013357","journal-title":"J Artif Intell Res"},{"key":"495_CR19","unstructured":"Contreras I (2015) Qualcomm research brings server-class machine learning to everyday devicesmaking them smarte. Technical report, Qualcomm Technologies, Inc., San Diego, CA. https:\/\/www.qualcomm.com\/news\/onq\/2015\/10\/01\/qualcomm-research-brings-server-class-machine-learning-everyday-devices-making . Accessed 12 Jan 2016"},{"issue":"3","key":"495_CR20","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273\u2013297","journal-title":"Mach Learn"},{"issue":"2","key":"495_CR21","doi-asserted-by":"crossref","first-page":"198","DOI":"10.4085\/1062-6050-47.2.198","volume":"47","author":"T Covassin","year":"2012","unstructured":"Covassin T, Cheng G, Nayar S, Heiden E (2012) Epidemiology of overuse and acute injuries among competitive collegiate athletes. J Athl Train 47(2):198\u2013204","journal-title":"J Athl Train"},{"issue":"1","key":"495_CR22","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","volume":"13","author":"TM Cover","year":"1967","unstructured":"Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21\u201327","journal-title":"IEEE Trans Inf Theory"},{"key":"495_CR23","doi-asserted-by":"crossref","unstructured":"Cuspinera LP, Uetsuji S, Ordonez J, Roggen D (2016) Wearable beach volleyball serve type recognition. In: Proceedings of the 20th international symposium on wearable computers","DOI":"10.1145\/2971763.2971781"},{"key":"495_CR24","doi-asserted-by":"crossref","unstructured":"Deng L, Li J, Huang J-T, Yao K, Yu D, Seide F, Seltzer M, Zweig G, He X, Williams J, Gong Y, Acero A (2013) Recent advances in deep learning for speech research at Microsoft. In: Proceedings of the international conference on acoustics, speech and signal processing (ICASSP), Vancouver, Canada, pp 8604\u20138608","DOI":"10.1109\/ICASSP.2013.6639345"},{"key":"495_CR25","doi-asserted-by":"publisher","unstructured":"Domingos P (1999) MetaCost: a general method for making classifiers cost-sensitive. In: Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, USA, pp 155\u2013164. ISBN 1581131437. doi: 10.1145\/312129.312220","DOI":"10.1145\/312129.312220"},{"key":"495_CR26","unstructured":"Gomez G, Linarth A, Link D, Eskofier BM (2012) Semi-automatic tracking of beach volleyball players. In: 9. Symposium der Sektion Sportinformatik der Deutschen Vereinigung fr Sportwissenschaft, p 22"},{"key":"495_CR27","unstructured":"Groh BH, Kautz T, Schuldhaus D, Eskofier BM (2015) Imu-based trick classification in skateboarding. In: Proceedings of the KDD workshop on large-scale sports analytics, Sydney, Australia"},{"key":"495_CR28","doi-asserted-by":"crossref","unstructured":"Groh BH, Fleckenstein M, Eskofier B (2016) Wearable trick classification in freestyle snowboarding. In: Proceedings of the 13th annual international body sensor networks conference, San Francisco, USA, pp 89\u201393","DOI":"10.1109\/BSN.2016.7516238"},{"key":"495_CR29","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. arXiv:1502.01852","DOI":"10.1109\/ICCV.2015.123"},{"issue":"6","key":"495_CR30","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/MSP.2012.2205597","volume":"29","author":"G Hinton","year":"2012","unstructured":"Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-Rahman, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012a) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82\u201397","journal-title":"IEEE Signal Process Mag"},{"key":"495_CR31","unstructured":"Hinton G, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012b) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580"},{"issue":"1","key":"495_CR32","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1109\/34.273716","volume":"16","author":"TK Ho","year":"1994","unstructured":"Ho TK, Hull JJ, Srihari SN (1994) Decision combination in multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 16(1):66\u201375","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"495_CR33","doi-asserted-by":"crossref","unstructured":"Holleczek T, Schoch J, Arnrich B, Troster G (2010) Recognizing turns and other snowboarding activities with a gyroscope. In: Proceedings of the international symposium on wearable computers (ISWC), Seoul, South Korea, pp 1\u20138","DOI":"10.1109\/ISWC.2010.5665871"},{"key":"495_CR34","unstructured":"Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167"},{"issue":"1","key":"495_CR35","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1080\/14763141.2015.1027950","volume":"14","author":"JM Jarning","year":"2015","unstructured":"Jarning JM, Mok K-M, Hansen BH, Bahr R (2015) Application of a tri-axial accelerometer to estimate jump frequency in volleyball. Sports Biomech 14(1):95\u2013105","journal-title":"Sports Biomech"},{"key":"495_CR36","doi-asserted-by":"crossref","unstructured":"Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition? In: Proceedings of the 12th international conference on computer vision, Kyoto, Japan, pp 2146\u20132153","DOI":"10.1109\/ICCV.2009.5459469"},{"key":"495_CR37","doi-asserted-by":"crossref","unstructured":"Jordan MI (1994) A statistical approach to decision tree modeling. In: Proceedings of the 7th annual conference on computational learning theory","DOI":"10.1145\/180139.175372"},{"key":"495_CR38","unstructured":"Kautz T, Groh BH, Eskofier BM (2015) Sensor fusion for multi-player activity recognition in game sports. In: Proceedings of the KDD workshop on large-scale sports analytics, Sydney, Australia"},{"key":"495_CR39","unstructured":"Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: Proceedings of the international conference on learning representations, San Diego, USA, pp 1\u201313"},{"issue":"1","key":"495_CR40","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","volume":"97","author":"R Kohavi","year":"1997","unstructured":"Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273\u2013324","journal-title":"Artif Intell"},{"key":"495_CR41","first-page":"25","volume":"30","author":"S Kotsiantis","year":"2006","unstructured":"Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Handling imbalanced datasets: a review. Science 30:25\u201336","journal-title":"Science"},{"key":"495_CR42","doi-asserted-by":"crossref","unstructured":"Lane ND, Georgiev P (2015) Can deep learning revolutionize mobile sensing? In: Proceedings of the 16th international workshop on mobile computing systems and applications, Santa Fe, USA, pp 117\u2013122","DOI":"10.1145\/2699343.2699349"},{"key":"495_CR43","unstructured":"LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Touretzky D (ed) Advances in neural information processing systems. Morgan Kaufmann, San Francisco, vol 2, pp 396\u2013404"},{"issue":"7553","key":"495_CR44","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436\u2013444","journal-title":"Nature"},{"issue":"10","key":"495_CR45","doi-asserted-by":"crossref","first-page":"e75196","DOI":"10.1371\/journal.pone.0075196","volume":"8","author":"H Leutheuser","year":"2013","unstructured":"Leutheuser H, Schuldhaus D, Eskofier BM (2013) Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS ONE 8(10):e75196","journal-title":"PLoS ONE"},{"key":"495_CR46","doi-asserted-by":"crossref","unstructured":"Lewis DD (1998) Naive bayes at forty: the independence assumption in information retrieval. In: Proceedings of the 10th European conference on machine learning, Chemnitz, Germany, pp 4\u201315","DOI":"10.1007\/BFb0026666"},{"key":"495_CR47","first-page":"171","volume":"11","author":"D Link","year":"2010","unstructured":"Link D, Haag T, Rau C, Lames M (2010) Wettkampfanalyse im Beachvolleyball mittels Positionsdaten. BISp Jahrb Forsch 11:171\u2013174","journal-title":"BISp Jahrb Forsch"},{"key":"495_CR48","doi-asserted-by":"crossref","unstructured":"Meir R, R\u00e4tsch G (2003) An introduction to boosting and leveraging. In: Mendelson S, Smola AJ (eds) Advanced lectures on machine learning. Springer, New York, pp 118\u2013183","DOI":"10.1007\/3-540-36434-X_4"},{"issue":"4","key":"495_CR49","doi-asserted-by":"crossref","first-page":"5317","DOI":"10.3390\/s130405317","volume":"13","author":"E Mitchell","year":"2013","unstructured":"Mitchell E, Monaghan D, O\u2019Connor NE (2013) Classification of sporting activities using smartphone accelerometers. Sensors 13(4):5317\u20135337","journal-title":"Sensors"},{"key":"495_CR50","doi-asserted-by":"crossref","unstructured":"Nguyen LNN, Rodr\u00edguez-Mart\u00edn D, Catal\u00e0 A, P\u00e9rez-L\u00f3pez C, Sam\u00e0 A, Cavallaro A (2015) Basketball activity recognition using wearable inertial measurement units. In: Proceedings of the 16th international conference on human computer interaction, Heraklion, Greece, p 60","DOI":"10.1145\/2829875.2829930"},{"key":"495_CR51","doi-asserted-by":"crossref","unstructured":"Nguyen-Dinh L.-V, Roggen D, Calatroni A, Tr\u00f6ster G (2012) Improving online gesture recognition with template matching methods in accelerometer data. In: Proceedings of the 12th international conference on intelligent systems design and applications (ISDA), pp 831\u2013836","DOI":"10.1109\/ISDA.2012.6416645"},{"issue":"1","key":"495_CR52","doi-asserted-by":"crossref","first-page":"115","DOI":"10.3390\/s16010115","volume":"16","author":"FJ Ord\u00f3\u00f1ez","year":"2016","unstructured":"Ord\u00f3\u00f1ez FJ, Roggen D (2016) Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1):115","journal-title":"Sensors"},{"key":"495_CR53","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"495_CR54","unstructured":"Ravi N, Dandekar N, Mysore P, Littman ML (2005) Activity recognition from accelerometer data. In: Proceedings of the 17th national conference on innovative applications of artificial intelligence, Pittsburgh, USA, vol 5, pp 1541\u20131546"},{"key":"495_CR55","doi-asserted-by":"crossref","unstructured":"Rawashdeh SA, Rafeldt DA, Uhl TL, Lumpp JE (2015) Wearable motion capture unit for shoulder injury prevention. In: Proceedings of the IEEE 12th international conference on wearable and implantable body sensor networks (BSN), London, UK, pp 1\u20136","DOI":"10.1109\/BSN.2015.7299417"},{"issue":"7","key":"495_CR56","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1136\/bjsm.2005.018234","volume":"40","author":"JC Reeser","year":"2006","unstructured":"Reeser JC, Verhagen E, Brinner WW, Askeland I, Bahr R (2006) Strategies for the prevention of volleyball related injuries. Br J Sports Med 40(7):594\u2013600","journal-title":"Br J Sports Med"},{"key":"495_CR57","doi-asserted-by":"crossref","unstructured":"Roggen D, Cuspinera LP, Pombo G, Ali F, Nguyen-Dinh L-V (2015) Limited-memory warping LCSS for real-time low-power pattern recognition in wireless nodes. In: Abdelzaher T, Pereira N, Tovar E (eds) Wireless sensor networks. Springer, Cham, pp 151\u2013167","DOI":"10.1007\/978-3-319-15582-1_10"},{"key":"495_CR58","doi-asserted-by":"crossref","unstructured":"Santos JM, Embrechts M (2009) On the use of the adjusted rand index as a metric for evaluating supervised classification. In: 19th international conference on artificial neural networks (ICANN 2009), Limassol, Cyprus, pp 175\u2013184","DOI":"10.1007\/978-3-642-04277-5_18"},{"key":"495_CR59","unstructured":"Schuldhaus D, Zwick C, K\u00f6rger H, Dorschky E, Kirk R, Eskofier BM (2015) Inertial sensor-based approach for shot\/pass classification during a soccer match. In: Proceedings of the KDD workshop on large-scale sports analytics, Sydney, Australia"},{"issue":"4","key":"495_CR60","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1109\/TIT.1981.1056373","volume":"27","author":"JE Shore","year":"1981","unstructured":"Shore JE, Johnson RW (1981) Properties of cross-entropy minimization. IEEE Trans Inf Theory 27(4):472\u2013482","journal-title":"IEEE Trans Inf Theory"},{"key":"495_CR61","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1109\/MPRV.2008.40","volume":"2","author":"T Stiefmeier","year":"2008","unstructured":"Stiefmeier T, Roggen D, Ogris G, Lukowicz P, Tr\u00f6ster G (2008) Wearable activity tracking in car manufacturing. IEEE Pervasive Comput 2:42\u201350","journal-title":"IEEE Pervasive Comput"},{"key":"495_CR62","unstructured":"STMicroelectronics (2015) STM32L151CC microcontroller, data sheet, Geneva, Switzerland. http:\/\/www.st.com\/st-web-ui\/static\/active\/en\/resource\/technical\/document\/datasheet\/DM00048356.pdf . Accessed 16 Nov 2015"},{"issue":"2","key":"495_CR63","doi-asserted-by":"crossref","first-page":"82","DOI":"10.2165\/00007256-199214020-00002","volume":"14","author":"W Mechelen van","year":"1992","unstructured":"van Mechelen W, Hynek H, Kemper HCG (1992) Incidence, severity, aetiology and prevention of sports injuries. Sports Med 14(2):82\u201399","journal-title":"Sports Med"},{"key":"495_CR64","doi-asserted-by":"crossref","unstructured":"Zeiler MD, Ranzato M, Monga R, Mao M, Yang K, Le QV, Nguyen P, Senior A, Vanhoucke V, Dean J, et\u00a0al (2013) On rectified linear units for speech processing. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), Vancouver, Canada, pp 3517\u20133521","DOI":"10.1109\/ICASSP.2013.6638312"},{"key":"495_CR65","doi-asserted-by":"crossref","unstructured":"Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P, Zhang J (2014) Convolutional neural networks for human activity recognition using mobile sensors. In: Proceedings of the 6th international conference on mobile computing, applications and services (MobiCASE), Austin, USA, pp 197\u2013205","DOI":"10.4108\/icst.mobicase.2014.257786"},{"key":"495_CR66","doi-asserted-by":"crossref","unstructured":"Zheng Y, Liu Q, Chen E, Ge Y, Zhao JL (2014) Time series classification using multi-channels deep convolutional neural networks. In: Li F, Li G, Hwang S, Yao B, Zhang Z (eds) Web-age information management. Springer, Cham, pp 298\u2013310","DOI":"10.1007\/978-3-319-08010-9_33"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10618-017-0495-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-017-0495-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-017-0495-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,19]],"date-time":"2019-09-19T03:16:45Z","timestamp":1568863005000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10618-017-0495-0"}},"subtitle":["Leveraging the potential of Deep Learning in sports"],"short-title":[],"issued":{"date-parts":[[2017,2,25]]},"references-count":66,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2017,11]]}},"alternative-id":["495"],"URL":"https:\/\/doi.org\/10.1007\/s10618-017-0495-0","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,2,25]]}}}