{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T05:55:33Z","timestamp":1726206933764},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2013,5,5]],"date-time":"2013-05-05T00:00:00Z","timestamp":1367712000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2014,5]]},"DOI":"10.1007\/s10618-013-0317-y","type":"journal-article","created":{"date-parts":[[2013,5,4]],"date-time":"2013-05-04T07:19:19Z","timestamp":1367651959000},"page":"736-772","source":"Crossref","is-referenced-by-count":54,"title":["Subspace clustering of high-dimensional data: a predictive approach"],"prefix":"10.1007","volume":"28","author":[{"given":"Brian","family":"McWilliams","sequence":"first","affiliation":[]},{"given":"Giovanni","family":"Montana","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2013,5,5]]},"reference":[{"issue":"9","key":"317_CR1","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.1093\/bioinformatics\/btr112","volume":"27","author":"J Baek","year":"2011","unstructured":"Baek J, McLachlan GJ (2011) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics (Oxford, England) 27(9):1269\u20131276. doi: 10.1093\/bioinformatics\/btr112","journal-title":"Bioinformatics (Oxford, England)"},{"key":"317_CR2","doi-asserted-by":"crossref","DOI":"10.1002\/0471725153","volume-title":"Regression diagnostics: identifying influential data and sources of collinearity","author":"DA Belsley","year":"1980","unstructured":"Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity, 1st edn. Wiley, New York","edition":"1"},{"issue":"24","key":"317_CR3","doi-asserted-by":"crossref","first-page":"13,790","DOI":"10.1073\/pnas.191502998","volume":"98","author":"A Bhattacharjee","year":"2001","unstructured":"Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinomas sub-classes. Proc Natl Acad Sci 98(24):13,790\u201313,795","journal-title":"Proc Natl Acad Sci"},{"key":"317_CR4","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1023\/A:1008324625522","volume":"16","author":"P Bradley","year":"2000","unstructured":"Bradley P, Mangasarian O (2000) k-Plane clustering. J Glob Optim 16:23\u201332","journal-title":"J Glob Optim"},{"key":"317_CR5","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1007\/s00216-007-1790-1","volume":"390","author":"R Bro","year":"2008","unstructured":"Bro R, Kjeldahl K, Smilde AK, Kiers HAL (2008) Selecting the number of components in principal component analysis using cross-validation approximations. Anal Bioanal Chem 390:1241\u20131251","journal-title":"Anal Bioanal Chem"},{"key":"317_CR6","doi-asserted-by":"crossref","unstructured":"Bhm C, Kailing K, Krger P, Zimek A (2004) Computing clusters of correlation connected objects. In: SIGMOD","DOI":"10.1145\/1007568.1007620"},{"issue":"2","key":"317_CR7","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/MSP.2007.914731","volume":"25","author":"EJ Candes","year":"2008","unstructured":"Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21\u201330. doi: 10.1109\/msp.2007.914731","journal-title":"IEEE Signal Process Mag"},{"key":"317_CR8","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1214\/ss\/1177013622","volume":"1","author":"S Chatterjee","year":"1986","unstructured":"Chatterjee S, Hadi A (1986) Influential observations, high leverage points, and outliers in linear regression. Statl Sci 1:379\u2013393. doi: 10.1214\/ss\/1177013622","journal-title":"Statl Sci"},{"key":"317_CR9","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1007\/s11263-008-0178-9","volume":"81","author":"G Chen","year":"2008","unstructured":"Chen G, Lerman G (2008) Spectral Curvature Clustering (SCC). Int J Comput Vis 81:317\u2013330. doi: 10.1007\/s11263-008-0178-9","journal-title":"Int J Comput Vis"},{"key":"317_CR10","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1111\/j.2517-6161.1986.tb01398.x","volume":"48","author":"RD Cook","year":"1986","unstructured":"Cook RD (1986) Assessment of local influence. J R Stat Soc Ser B 48:133\u2013169","journal-title":"J R Stat Soc Ser B"},{"key":"317_CR11","doi-asserted-by":"crossref","unstructured":"Delannay N, Archambeau C, Verleysen M (2008) Improving the robustness to outliers of mixtures of probabilistic pcas. In: 12th Pacific-Asia conference on advances in knowledge discovery and data mining, PAKDD 2008. Springer, pp 527\u2013535","DOI":"10.1007\/978-3-540-68125-0_47"},{"key":"317_CR12","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1007\/s10618-006-0060-8","volume":"14","author":"C Domeniconi","year":"2007","unstructured":"Domeniconi C, Gunopulos D, Ma S, Yan B, Al-Razgan M, Papadopoulos D (2007) Locally adaptive metrics for clustering high dimensional data. Knowl Discov Data Min 14:63\u201397","journal-title":"Knowl Discov Data Min"},{"key":"317_CR13","doi-asserted-by":"crossref","unstructured":"Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: IEEE conference on computer vision and pattern recognition, pp 2790\u20132797. doi: 10.1109\/CVPRW.2009.5206547","DOI":"10.1109\/CVPR.2009.5206547"},{"key":"317_CR14","unstructured":"Elke Achtert Christian B\u00f6hm HPKPKAZ (2007) Robust, complete, and efficient correlation clustering. In: SIAM international conference on data mining, SDM 2007"},{"key":"317_CR15","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1214\/07-AOAS131","volume":"1","author":"J Friedman","year":"2007","unstructured":"Friedman J, Hastie E, H\u00f6fling H, Tibshirani R (2007) Pathwise coordinate optimization. Ann Appl Stat 1:302\u2013332","journal-title":"Ann Appl Stat"},{"issue":"5439","key":"317_CR16","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","volume":"286","author":"TR Golub","year":"1999","unstructured":"Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing J, Caligiuri M, Bloomfield C, Lander E (1999) Molecular classification of cancer: class discovery and class prediction by gene expression. Science 286(5439):531\u2013537","journal-title":"Science"},{"key":"317_CR17","doi-asserted-by":"crossref","unstructured":"Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer Series in Statistics. Springer, New York. doi: 10.1007\/b98835","DOI":"10.1007\/b98835"},{"key":"317_CR18","doi-asserted-by":"crossref","unstructured":"Kriegel HP, Kr\u00f6ger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1\u201358","DOI":"10.1145\/1497577.1497578"},{"key":"317_CR19","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","volume":"17","author":"U Luxburg","year":"2007","unstructured":"Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395\u2013416. doi: 10.1007\/s11222-007-9033-z","journal-title":"Stat Comput"},{"key":"317_CR20","unstructured":"Ma Y (2006) Generalized principal component analysis: modeling & segmentation of multivariate mixed data"},{"key":"317_CR21","doi-asserted-by":"crossref","unstructured":"McWilliams B, Montana G (2010) A PRESS statistic for two-block partial least squares regression. In: Proceedings of the 10th annual workshop on computational intelligence","DOI":"10.1109\/UKCI.2010.5625583"},{"key":"317_CR22","doi-asserted-by":"crossref","unstructured":"McWilliams B, Montana G (2011) Predictive subspace clustering. In: 2011 tenth international conference on machine learning and applications (ICMLA), pp 247\u2013252","DOI":"10.1109\/ICMLA.2011.117"},{"key":"317_CR23","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1111\/j.1467-9868.2010.00740.x","volume":"72","author":"N Meinshausen","year":"2010","unstructured":"Meinshausen N, B\u00fchlmann P (2010) Stability selection. J R Stat Soc Ser B 72:417\u2013473. doi: 10.1111\/j.1467-9868.2010.00740.x","journal-title":"J R Stat Soc Ser B"},{"issue":"2","key":"317_CR24","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/S0003-2670(01)01040-6","volume":"439","author":"M Meloun","year":"2001","unstructured":"Meloun M (2001) Detection of single influential points in OLS regression model building. Anal Chim Acta 439(2):169\u2013191. doi: 10.1016\/S0003-2670(01)01040-6","journal-title":"Anal Chim Acta"},{"key":"317_CR25","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1007\/BF00142664","volume":"5","author":"B Mertens","year":"1995","unstructured":"Mertens B, Fearn T, Thompson M (1995) The efficient cross-validation of principal components applied to principal component regression. Stat Comput 5:227\u2013235. doi: 10.1007\/BF00142664","journal-title":"Stat Comput"},{"key":"317_CR26","doi-asserted-by":"crossref","unstructured":"Monti S, Tamayo P, Mesirov J, Golub G (2003) Consensus clustering a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91\u2013118","DOI":"10.1023\/A:1023949509487"},{"key":"317_CR27","doi-asserted-by":"crossref","unstructured":"Ng AY (2004) Feature selection, $$\\ell _1$$ \u2113 1 vs. $$\\ell _2$$ \u2113 2 regularization, and rotational invariance. In: Proceedings of the twenty-first international conference on Machine learning, ICML \u201904. ACM, New York, NY, USA, pp 78\u201385. doi: 10.1145\/1015330.1015435","DOI":"10.1145\/1015330.1015435"},{"issue":"6870","key":"317_CR28","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/415436a","volume":"415","author":"S Pomeroy","year":"2001","unstructured":"Pomeroy S, Tamayo P, Gaasenbeek M, Angelo LMSM, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin A, Califano G, Stolovitzky DN, Louis JP, Mesirov ES, Lander R, Golub TR (2001) Gene expression-based classification and outcome prediction of central nervous system embryonal tumors. Nature 415(6870):436\u2013442","journal-title":"Nature"},{"key":"317_CR29","doi-asserted-by":"crossref","unstructured":"Rahmatullah Imon A (2005) Identifying multiple influential observations in linear regression. J Appl Stat 32:929\u2013946. doi: 10.1080\/02664760500163599 .","DOI":"10.1080\/02664760500163599"},{"issue":"26","key":"317_CR30","doi-asserted-by":"crossref","first-page":"15,149","DOI":"10.1073\/pnas.211566398","volume":"98","author":"S Ramaswamy","year":"2001","unstructured":"Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multi-class cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci 98(26):15,149\u201315,154","journal-title":"Proc Natl Acad Sci"},{"issue":"3","key":"317_CR31","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1038\/nbt0308-303","volume":"26","author":"M Ringnr","year":"2008","unstructured":"Ringnr M (2008) What is principal component analysis? Nat Biotechnol 26(3):303\u2013304. doi: 10.1038\/nbt0308-303","journal-title":"Nat Biotechnol"},{"key":"317_CR32","doi-asserted-by":"crossref","first-page":"1015","DOI":"10.1016\/j.jmva.2007.06.007","volume":"99","author":"H Shen","year":"2008","unstructured":"Shen H, Huang J (2008) Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 99:1015\u20131034","journal-title":"J Multivar Anal"},{"issue":"1","key":"317_CR33","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1214\/aoms\/1177729893","volume":"21","author":"J Sherman","year":"1950","unstructured":"Sherman J, Morrison W (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124\u2013127","journal-title":"Ann Math Stat"},{"key":"317_CR34","doi-asserted-by":"crossref","unstructured":"Sim K, Gopalkrishnan V, Zimek A, Cong G (2012) A survey on enhanced subspace clustering. Knowl Discov Data Min 26(2): 332\u2013397","DOI":"10.1007\/s10618-012-0258-x"},{"issue":"7","key":"317_CR35","first-page":"4447","volume":"99","author":"AI Su","year":"2002","unstructured":"Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci 99(7):4447\u20134465","journal-title":"Proc Natl Acad Sci"},{"key":"317_CR36","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1038\/nature10166","volume":"474","author":"The Cancer Genome Atlas Research Network","year":"2011","unstructured":"The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:91\u2013118","journal-title":"Nature"},{"key":"317_CR37","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1994","unstructured":"Tibshirani R (1994) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267\u2013288","journal-title":"J R Stat Soc Ser B"},{"issue":"2","key":"317_CR38","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1111\/1467-9868.00293","volume":"63","author":"R Tibshirani","year":"2001","unstructured":"Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B 63(2):411\u2013423","journal-title":"J R Stat Soc Ser B"},{"issue":"2","key":"317_CR39","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1162\/089976699300016728","volume":"11","author":"ME Tipping","year":"1999","unstructured":"Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analyzers. Neural Comput 11(2):443\u2013482. doi: 10.1162\/089976699300016728","journal-title":"Neural Comput"},{"key":"317_CR40","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1109\/MSP.2010.939739","volume":"28","author":"R Vidal","year":"2011","unstructured":"Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28:52\u201368. doi: 10.1109\/MSP.2010.939739","journal-title":"IEEE Signal Process Mag"},{"key":"317_CR41","doi-asserted-by":"crossref","unstructured":"Wainwright MJ (2009) Sharp thresholds for high-dimensional and noisy sparsity recovery using $$\\ell _1$$ \u2113 1 -constrained quadratic programming (lasso). IEEE Trans Inf Theory 55(5):2183\u20132202. doi: 10.1109\/TIT.2009.2016018","DOI":"10.1109\/TIT.2009.2016018"},{"key":"317_CR42","doi-asserted-by":"crossref","unstructured":"Wang D, Ding C, Li T (2009) K-Subspace clustering. In: Machine learning and knowledge discovery in databases, pp 506\u2013521. Springer","DOI":"10.1007\/978-3-642-04174-7_33"},{"key":"317_CR43","unstructured":"Witten D (2010) A penalized matrix decomposition, and its applications. Ph.D. thesis, Stanford University. http:\/\/www-stat.stanford.edu\/tibs\/sta306b\/Defense.pdf"},{"key":"317_CR44","doi-asserted-by":"crossref","unstructured":"Witten D, Tibshirani R (2010) A framework for feature selection in clustering. J Am Stat Assoc 105:713\u2013726. doi: 10.1198\/jasa.2010.tm09415 . http:\/\/www.pubmedcentral.nih.gov\/articlerender.fcgi?artid=2930825&tool=pmcentrez&rendertype=abstract","DOI":"10.1198\/jasa.2010.tm09415"},{"key":"317_CR45","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/0165-1684(96)00008-4","volume":"50","author":"B Yang","year":"1996","unstructured":"Yang B (1996) Asymptotic convergence analysis of the projection approximation subspace tracking algorithms. Signal Process 50:123\u2013136","journal-title":"Signal Process"},{"key":"317_CR46","doi-asserted-by":"crossref","unstructured":"Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133\u2013143","DOI":"10.1016\/S1535-6108(02)00032-6"},{"key":"317_CR47","doi-asserted-by":"crossref","unstructured":"Zhang T, Szlam A, Wang Y, Lerman G (2010) Hybrid linear modeling via local best-fit flats. Arxiv preprint.","DOI":"10.1109\/CVPR.2010.5539866"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-013-0317-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10618-013-0317-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-013-0317-y","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T04:35:48Z","timestamp":1715315748000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10618-013-0317-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,5,5]]},"references-count":47,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2014,5]]}},"alternative-id":["317"],"URL":"https:\/\/doi.org\/10.1007\/s10618-013-0317-y","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2013,5,5]]}}}