{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T23:36:36Z","timestamp":1704843396943},"reference-count":50,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2012,6,30]],"date-time":"2012-06-30T00:00:00Z","timestamp":1341014400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2012,9]]},"DOI":"10.1007\/s10618-012-0277-7","type":"journal-article","created":{"date-parts":[[2012,6,29]],"date-time":"2012-06-29T14:43:13Z","timestamp":1340980993000},"page":"358-377","source":"Crossref","is-referenced-by-count":13,"title":["Fast projections onto mixed-norm balls with applications"],"prefix":"10.1007","volume":"25","author":[{"given":"Suvrit","family":"Sra","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,6,30]]},"reference":[{"key":"277_CR1","unstructured":"Bach F (2010) Structured sparsity-inducing norms through submodular functions. In: Advances in Neural Information Processing Systems (NIPS)"},{"key":"277_CR2","volume-title":"Optimization for machine learning","author":"F Bach","year":"2011","unstructured":"Bach F, Jenatton R, Mairal J, Obozinski G (2011) Convex optimization with sparsity-inducing norms. In: Sra S, Nowozin S, Wright SJ (eds) Optimization for machine learning. MIT Press, Cambridge"},{"key":"277_CR3","first-page":"1179","volume":"9","author":"FR Bach","year":"2008","unstructured":"Bach FR (2008) Consistency of the group lasso and multiple kernel learning. J Mach Learn Res 9: 1179\u20131225","journal-title":"J Mach Learn Res"},{"issue":"1","key":"277_CR4","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1093\/imanum\/8.1.141","volume":"8","author":"J Barzilai","year":"1988","unstructured":"Barzilai J, Borwein JM (1988) Two-point step size gradient methods. IMA J Numer Anal 8(1): 141\u2013148","journal-title":"IMA J Numer Anal"},{"issue":"1","key":"277_CR5","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","volume":"2","author":"A Beck","year":"2009","unstructured":"Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imgaging Sci 2(1): 183\u2013202","journal-title":"SIAM J Imgaging Sci"},{"key":"277_CR6","volume-title":"Nonlinear programming","author":"DP Bertsekas","year":"1999","unstructured":"Bertsekas DP (1999) Nonlinear programming. Athena Scientific, Massachusett","edition":"2"},{"key":"277_CR7","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-0653-8","volume-title":"Matrix analysis","author":"R Bhatia","year":"1997","unstructured":"Bhatia R (1997) Matrix analysis. Springer, New York"},{"issue":"4","key":"277_CR8","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1137\/S1052623497330963","volume":"10","author":"EG Birgin","year":"2000","unstructured":"Birgin EG, Mart\u00ednez JM, Raydan M (2000) Nonmonotone spectral projected gradient methods on convex sets. SIAM J Opt 10(4): 1196\u20131211","journal-title":"SIAM J Opt"},{"key":"277_CR9","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1093\/imanum\/23.4.539","volume":"23","author":"EG Birgin","year":"2003","unstructured":"Birgin EG, Mart\u00ednez JM, Raydan M (2003) Inexact spectral projected gradient methods on convex sets. IMA J Numer Anal 23: 539\u2013559","journal-title":"IMA J Numer Anal"},{"issue":"4","key":"277_CR10","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","volume":"20","author":"JF Cai","year":"2010","unstructured":"Cai JF, Candes EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4): 1956\u20131982","journal-title":"SIAM J Optim"},{"key":"277_CR11","doi-asserted-by":"crossref","unstructured":"Combettes PL, Pesquet J (2010) Proximal splitting methods in signal processing. arXiv:0912.3522v4","DOI":"10.1007\/978-1-4419-9569-8_10"},{"issue":"1","key":"277_CR12","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s00211-004-0569-y","volume":"100","author":"YH Dai","year":"2005","unstructured":"Dai YH, Fletcher R (2005) Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer Math 100(1): 21\u201347","journal-title":"Numer Math"},{"issue":"3","key":"277_CR13","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1109\/18.382009","volume":"41","author":"D Donoho","year":"2002","unstructured":"Donoho D (2002) Denoising by soft-thresholding. IEEE Tran Inf Theory 41(3): 613\u2013627","journal-title":"IEEE Tran Inf Theory"},{"key":"277_CR14","unstructured":"Duchi J, Singer Y (2009) Online and batch learning using forward-backward splitting. J Mach Learn Res"},{"key":"277_CR15","first-page":"615","volume":"6","author":"T Evgeniou","year":"2005","unstructured":"Evgeniou T, Micchelli C, Pontil M (2005) Learning multiple tasks with kernel methods. J Mach Learn Res 6: 615\u2013637","journal-title":"J Mach Learn Res"},{"key":"277_CR16","doi-asserted-by":"crossref","unstructured":"Evgeniou T, Pontil M (2004) Regularized multi-task learning. In: SIGKDD, 109\u2013117","DOI":"10.1145\/1014052.1014067"},{"key":"277_CR17","unstructured":"Friedman J, Hastie T, Tibshirani R (2010) A note on the group lasso and a sparse group lasso. arXiv:1001.0736v1 [math.ST]"},{"issue":"8","key":"277_CR18","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1080\/00207728108963798","volume":"12","author":"M Fukushima","year":"1981","unstructured":"Fukushima M, Mine H (1981) A generalized proximal point algorithm for certain non-convex minimization problems. Int J Syst Sci 12(8): 989\u20131000","journal-title":"Int J Syst Sci"},{"key":"277_CR19","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511840371","volume-title":"Topics in matrix analysis","author":"RA Horn","year":"1991","unstructured":"Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, Cambridge"},{"key":"277_CR20","unstructured":"Jenatton R, Mairal J, Obozinski G, Bach F (2010) Proximal methods for sparse hierarchical dictionary learning. In: International Conference on Machine Learning (ICML), pp 487\u2013494"},{"key":"277_CR21","unstructured":"Kim D, Sra S, Dhillon IS (2010) A scalable trust-region algorithm with application to mixed-norm regression. In: International Conferences on Machine Learning (ICML), pp 519\u2013526"},{"key":"277_CR22","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1007\/s10957-007-9259-0","volume":"134","author":"K Kiwiel","year":"2007","unstructured":"Kiwiel K (2007) On linear-time algorithms for the continuous quadratic knapsack problem. J Optim Theory Appl 134: 549\u2013554","journal-title":"J Optim Theory Appl"},{"issue":"3","key":"277_CR23","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.acha.2009.05.006","volume":"27","author":"M Kowalski","year":"2009","unstructured":"Kowalski M (2009) Sparse regression using mixed norms. Appl Comput Harmon Anal 27(3): 303\u2013324","journal-title":"Appl Comput Harmon Anal"},{"issue":"1","key":"277_CR24","first-page":"173","volume":"2","author":"A Lewis","year":"1995","unstructured":"Lewis A (1995) The convex analysis of unitarily invariant matrix functions. J Convex Anal 2(1): 173\u2013183","journal-title":"J Convex Anal"},{"key":"277_CR25","doi-asserted-by":"crossref","unstructured":"Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: International Conference on Machine Learning, pp 649\u2013656","DOI":"10.1145\/1553374.1553458"},{"key":"277_CR26","unstructured":"Liu J, Ji S, Ye J (2009) SLEP: sparse learning with efficient projections. Arizona State University, Phoenix. http:\/\/www.public.asu.edu\/~jye02\/Software\/SLEP"},{"key":"277_CR27","doi-asserted-by":"crossref","unstructured":"Liu J, Ye J (2009) Efficient euclidean projections in linear time. In: International conference on machine learning (ICML), pp 657\u2013664","DOI":"10.1145\/1553374.1553459"},{"key":"277_CR28","unstructured":"Liu J, Ye J (2010) Efficient L1\/Lq norm regularization. arXiv:1009.4766v1"},{"key":"277_CR29","unstructured":"Liu J, Ye J (2010) Moreau-Yosida regularization for grouped tree structure learning. In: Neural information processing systems (NIPS)"},{"key":"277_CR30","unstructured":"Mairal J, Jenatton R, Obozinski G, Bach F (2010) Network flow algorithms for structured sparsity. In: Advances in neural information processing systems (NIPS)"},{"issue":"1","key":"277_CR31","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1007\/BF00938486","volume":"50","author":"C Michelot","year":"1986","unstructured":"Michelot C (1986) A finite algorithm for finding the projection of a point onto the canonical simplex of $${\\mathbb{R}^n}$$ . J Optim Theory Appl 50(1): 195\u2013200","journal-title":"J Optim Theory Appl"},{"key":"277_CR32","unstructured":"Obonzinski G, Taskar B, Jordan M (2006) Multi-task feature selection. Technical report. University of California, Berkeley"},{"key":"277_CR33","unstructured":"Patriksson M (2005) A survey on a classic core problem in operations research, vol 33. Technical Report. Chalmers University of Technology and G\u00f6teborg University, Sweden"},{"key":"277_CR34","volume-title":"Introduction to optimization","author":"BT Polyak","year":"1987","unstructured":"Polyak BT (1987) Introduction to optimization. Optimization Software, Wellesley"},{"key":"277_CR35","doi-asserted-by":"crossref","unstructured":"Quattoni A, Carreras X, Collins M, Darrell T (2009) An efficient projection for \u2113 1,\u221e regularization. In: International conference on machine learning (ICML)","DOI":"10.1145\/1553374.1553484"},{"key":"277_CR36","unstructured":"Rakotomamonjy A, Flamary R, Gasso G, Canu S (2010)\u2113 p \u2212\u2113 q penalty for sparse linear and sparse multiple kernel multi-task learning. Technical Report hal-00509608, Version 1, INSA-Rouen"},{"key":"277_CR37","unstructured":"Rice U (2010) Compressive sensing resources. http:\/\/dsp.rice.edu\/cs"},{"key":"277_CR38","unstructured":"Rish I, Grabarnik G (2010) Sparse modeling: ICML 2010 tutorial. Online"},{"issue":"1","key":"277_CR39","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1137\/0108011","volume":"8","author":"J Rosen","year":"1960","unstructured":"Rosen J (1960) The gradient projection method for nonlinear programming. Part I. Linear constraints. J Soc Ind Appl Math 8(1): 181\u2013217","journal-title":"J Soc Ind Appl Math"},{"key":"277_CR40","unstructured":"Schmidt M, van~den Berg E, Friedlander M, Murphy K (2009) Optimizing costly functions with simple constraints: a limited-memory projected quasi-newton algorithm. In: Artificial intelligence and statistics (AISTATS)"},{"key":"277_CR41","unstructured":"Schmidt M, Roux NL, Bach F (2011) Convergence rates of inexact proximal-gradient methods for convex optimization. In: Advances in neural information processing systems (NIPS)"},{"issue":"1","key":"277_CR42","doi-asserted-by":"crossref","first-page":"406","DOI":"10.1016\/j.csda.2007.01.025","volume":"52","author":"T Simil\u00e4","year":"2007","unstructured":"Simil\u00e4 T, Tikka J (2007) Input selection and shrinkage in multiresponse linear regression. Comp Stat Data Anal 52(1): 406\u2013422","journal-title":"Comp Stat Data Anal"},{"key":"277_CR43","doi-asserted-by":"crossref","unstructured":"Sra S (2011) Fast projections onto \u2113 1,q -norm balls for grouped feature selection. In: European conference on machine learning (ECML)","DOI":"10.1007\/978-3-642-23808-6_20"},{"key":"277_CR44","volume-title":"Optimization for machine learning","author":"R Tomioka","year":"2011","unstructured":"Tomioka R, Suzuki T, Sugiyama M (2011) Augmented lagrangian methods for learning, selecting, and combining features. In: Sra S, Nowozin S, Wright SJ (eds) Optimization for machine learning. MIT Press, Cambridge"},{"issue":"3","key":"277_CR45","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1016\/j.sigpro.2005.05.031","volume":"86","author":"JA Tropp","year":"2006","unstructured":"Tropp JA (2006) Algorithms for simultaneous sparse approximation, Part II: convex relaxation. Signal Proc 86(3): 589\u2013602","journal-title":"Signal Proc"},{"key":"277_CR46","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1198\/004017005000000139","volume":"27","author":"BA Turlach","year":"2005","unstructured":"Turlach BA, Venables WN, Wright SJ (2005) Simultaneous variable selection. Technometrics 27: 349\u2013363","journal-title":"Technometrics"},{"key":"277_CR47","unstructured":"van den Berg E, Schmidt M, Friedlander MP, Murphy K (2008) Group sparsity via linear-time projection. Tech Rep TR-2008-09, University of British Columbia, Vancouver"},{"key":"277_CR48","unstructured":"Yuan M, Lin Y (2004) Model selection and estimation in regression with grouped variables. Technical Report 1095. Deptartment of Statistics, University of Wisconsin, Madison"},{"key":"277_CR49","unstructured":"Zhang Y, Yeung DY, Xu Q (2010) Probabilistic multi-task feature selection. In: Neural information processing systems (NIPS)"},{"issue":"6A","key":"277_CR50","doi-asserted-by":"crossref","first-page":"3468","DOI":"10.1214\/07-AOS584","volume":"37","author":"P Zhao","year":"2009","unstructured":"Zhao P, Rocha G, Yu B (2009) The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat 37(6A): 3468\u20133497","journal-title":"Ann Stat"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-012-0277-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10618-012-0277-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-012-0277-7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,30]],"date-time":"2019-06-30T11:47:29Z","timestamp":1561895249000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10618-012-0277-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,6,30]]},"references-count":50,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2012,9]]}},"alternative-id":["277"],"URL":"https:\/\/doi.org\/10.1007\/s10618-012-0277-7","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,6,30]]}}}