{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T13:13:10Z","timestamp":1721913190300},"reference-count":33,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2012,1,15]],"date-time":"2012-01-15T00:00:00Z","timestamp":1326585600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2013,3]]},"DOI":"10.1007\/s10618-012-0248-z","type":"journal-article","created":{"date-parts":[[2012,1,16]],"date-time":"2012-01-16T10:56:10Z","timestamp":1326711370000},"page":"217-254","source":"Crossref","is-referenced-by-count":33,"title":["Parameter-less co-clustering for star-structured heterogeneous data"],"prefix":"10.1007","volume":"26","author":[{"given":"Dino","family":"Ienco","sequence":"first","affiliation":[]},{"given":"C\u00e9line","family":"Robardet","sequence":"additional","affiliation":[]},{"given":"Ruggero G.","family":"Pensa","sequence":"additional","affiliation":[]},{"given":"Rosa","family":"Meo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,1,15]]},"reference":[{"key":"248_CR1","doi-asserted-by":"crossref","unstructured":"Anagnostopoulos A, Dasgupta A, Kumar R (2008) Approximation algorithms for co-clustering. In: Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, PODS \u201908. ACM, New York, pp 201\u2013210","DOI":"10.1145\/1376916.1376945"},{"key":"248_CR2","first-page":"1919","volume":"8","author":"A Banerjee","year":"2007","unstructured":"Banerjee A, Dhillon I, Ghosh J, Merugu S, Modha DS (2007) A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. J Mach Learn Res 8: 1919\u20131986","journal-title":"J Mach Learn Res"},{"key":"248_CR3","doi-asserted-by":"crossref","unstructured":"Bekkerman R, Jeon J (2007) Multi-modal clustering for multimedia collections. In: Computer vision and pattern recognition, IEEE Computer Society conference on vision and pattern recognition, pp 1\u20138","DOI":"10.1109\/CVPR.2007.383223"},{"key":"248_CR4","doi-asserted-by":"crossref","unstructured":"Bickel S, Scheffer T (2004) Multi-view clustering. In: ICDM, pp 19\u201326","DOI":"10.1109\/ICDM.2004.10095"},{"key":"248_CR5","doi-asserted-by":"crossref","unstructured":"Chakrabarti D, Papadimitriou S, Modha DS, Faloutsos C (2004) Fully automatic cross-associations. In: KDD, pp 79\u201388","DOI":"10.21236\/ADA459025"},{"key":"248_CR6","doi-asserted-by":"crossref","unstructured":"Chen Y, Wang L, Dong M (2009) Semi-supervised document clustering with simultaneous text representation and categorization. In: ECML\/PKDD (1), pp 211\u2013226","DOI":"10.1007\/978-3-642-04180-8_31"},{"issue":"10","key":"248_CR7","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1109\/TKDE.2009.169","volume":"22","author":"Y Chen","year":"2010","unstructured":"Chen Y, Wang L, Dong M (2010) Non-negative matrix factorization for semisupervised heterogeneous data coclustering. IEEE Trans Knowl Data Eng 22(10): 1459\u20131474","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"248_CR8","doi-asserted-by":"crossref","unstructured":"Cho H, Dhillon IS, Guan Y, Sra S (2004) Minimum sum-squared residue co-clustering of gene expression data. In: Proceedings of SIAM SDM 2004","DOI":"10.1137\/1.9781611972740.11"},{"key":"248_CR9","doi-asserted-by":"crossref","unstructured":"Cleuziou G, Exbrayat M, Martin L, Sublemontier JH (2009) CoFKM: a centralized method for multiple-view clustering. In: ICDM, pp 752\u2013757","DOI":"10.1109\/ICDM.2009.138"},{"key":"248_CR10","first-page":"1","volume":"7","author":"J Demsar","year":"2006","unstructured":"Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1\u201330","journal-title":"J Mach Learn Res"},{"key":"248_CR11","doi-asserted-by":"crossref","unstructured":"Dhillon IS, Mallela S, Modha DS (2003) Information-theoretic co-clustering. In: Proceedings of the ACM SIGKDD 2003. ACM Press, Washington, pp 89\u201398","DOI":"10.1145\/956750.956764"},{"key":"248_CR12","first-page":"1289","volume":"3","author":"G Forman","year":"2003","unstructured":"Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3: 1289\u20131305","journal-title":"J Mach Learn Res"},{"key":"248_CR13","doi-asserted-by":"crossref","unstructured":"Gao B, Liu TY, Ma WY (2006) Star-structured high-order heterogeneous data co-clustering based on consistent information theory. In: ICDM \u201906: proceedings of the sixth international conference on data mining, pp 880\u2013884","DOI":"10.1109\/ICDM.2006.154"},{"key":"248_CR14","first-page":"732","volume":"49","author":"LA Goodman","year":"1954","unstructured":"Goodman LA, Kruskal WH (1954) Measures of association for cross classification. J Am Stat Assoc 49: 732\u2013764","journal-title":"J Am Stat Assoc"},{"key":"248_CR15","doi-asserted-by":"crossref","unstructured":"Greco G, Guzzo A, Pontieri L (2009) Co-clustering multiple heterogeneous domains: linear combinations and agreements. IEEE Trans Knowl Data Eng 22:1649\u20131663","DOI":"10.1109\/TKDE.2009.207"},{"issue":"1","key":"248_CR16","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","volume":"2","author":"L Hubert","year":"1985","unstructured":"Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1): 193\u2013218","journal-title":"J Classif"},{"key":"248_CR17","doi-asserted-by":"crossref","unstructured":"Ienco D, Pensa RG, Meo R (2009) Parameter-free hierarchical co-clustering by n-ary splits. In: Proceedings of ECML\/PKDD 2009. Lecture notes in computer science, vol 5781. Springer, Berlin, pp 580\u2013595","DOI":"10.1007\/978-3-642-04180-8_55"},{"issue":"1","key":"248_CR18","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/S0377-2217(01)00104-7","volume":"137","author":"A Jaszkiewicz","year":"2002","unstructured":"Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial optimization. Eur J Oper Res 137(1): 50\u201371","journal-title":"Eur J Oper Res"},{"key":"248_CR19","doi-asserted-by":"crossref","unstructured":"Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards parameter-free data mining. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, KDD \u201904. ACM, New York, pp 206\u2013215","DOI":"10.1145\/1014052.1014077"},{"key":"248_CR20","unstructured":"Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich"},{"key":"248_CR21","unstructured":"Lee DD, Seung DD (2001) Algorithms for non-negative matrix factorization. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 556\u2013562"},{"key":"248_CR22","unstructured":"Liefooghe A, Humeau J, Mesmoudi S, Jourdan L, Talbi EG (2011) On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J Heuristics 1\u201336"},{"key":"248_CR23","doi-asserted-by":"crossref","unstructured":"Long B, Zhang ZM, W\u00fa X, Yu PS (2006) Spectral clustering for multi-type relational data. In: ICML \u201906: proceedings of the 23rd international conference on machine learning, pp 585\u2013592","DOI":"10.1145\/1143844.1143918"},{"key":"248_CR24","doi-asserted-by":"crossref","unstructured":"Long B, Zhang ZM, Yu PS (2007) A probabilistic framework for relational clustering. In: KDD \u201907: proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 470\u2013479","DOI":"10.1145\/1281192.1281244"},{"key":"248_CR25","unstructured":"Paquete L (2006) Stochastic local search algorithms for multiobjective combinatorial optimization: methods and analysis, vol 295. AKA Verlag\/IOS Press, Berlin"},{"issue":"3","key":"248_CR26","doi-asserted-by":"crossref","first-page":"943","DOI":"10.1016\/j.ejor.2004.08.024","volume":"169","author":"L Paquete","year":"2006","unstructured":"Paquete L, St\u00fctzle T (2006) A study of stochastic local search algorithms for the biobjective qap with correlated flow matrices. Eur J Oper Res 169(3): 943\u2013959","journal-title":"Eur J Oper Res"},{"key":"248_CR27","unstructured":"Pensa RG, Boulicaut JF (2008) Constrained co-clustering of gene expression data. In: Proceedings of SIAM SDM 2008, pp 25\u201336"},{"key":"248_CR28","doi-asserted-by":"crossref","unstructured":"Ramage D, Heymann P, Manning CD, Garcia-Molina H (2009) Clustering the tagged web. In: WSDM, pp 54\u201363","DOI":"10.1145\/1498759.1498809"},{"key":"248_CR29","doi-asserted-by":"crossref","unstructured":"Robardet C, Feschet F (2001a) Comparison of three objective functions for conceptual clustering. In: Proceedings PKDD\u201901, LNAI, vol 2168. Springer, Heidelberg, pp 399\u2013410","DOI":"10.1007\/3-540-44794-6_33"},{"key":"248_CR30","doi-asserted-by":"crossref","unstructured":"Robardet C, Feschet F (2001b) Efficient local search in conceptual clustering. In: Proceedings DS\u201901, LNCS, vol 2226. Springer, Heidelberg, pp 323\u2013335","DOI":"10.1007\/3-540-45650-3_28"},{"key":"248_CR31","volume-title":"Handbook of parametric and nonparametric statistical procedures","author":"DJ Sheskin","year":"2007","unstructured":"Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4 edn. Chapman & Hall\/CRC, Boca Raton","edition":"4"},{"key":"248_CR32","first-page":"583","volume":"3","author":"A Strehl","year":"2002","unstructured":"Strehl A, Ghosh J (2002) Cluster ensembles\u2014a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3: 583\u2013617","journal-title":"J Mach Learn Res"},{"key":"248_CR33","volume-title":"Biostatistical analysis","author":"JH Zar","year":"1998","unstructured":"Zar JH (1998) Biostatistical analysis, 4th edn. Prentice Hall, Englewood Cliffs","edition":"4"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-012-0248-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10618-012-0248-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-012-0248-z","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,22]],"date-time":"2019-06-22T14:34:52Z","timestamp":1561214092000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10618-012-0248-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,1,15]]},"references-count":33,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2013,3]]}},"alternative-id":["248"],"URL":"https:\/\/doi.org\/10.1007\/s10618-012-0248-z","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,1,15]]}}}