{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T15:44:43Z","timestamp":1726847083819},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2006,5,16]],"date-time":"2006-05-16T00:00:00Z","timestamp":1147737600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2006,9,25]]},"DOI":"10.1007\/s10618-005-0039-x","type":"journal-article","created":{"date-parts":[[2006,5,15]],"date-time":"2006-05-15T13:23:44Z","timestamp":1147699424000},"page":"335-364","source":"Crossref","is-referenced-by-count":433,"title":["Characteristic-Based Clustering for Time Series Data"],"prefix":"10.1007","volume":"13","author":[{"given":"Xiaozhe","family":"Wang","sequence":"first","affiliation":[]},{"given":"Kate","family":"Smith","sequence":"additional","affiliation":[]},{"given":"Rob","family":"Hyndman","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2006,5,16]]},"reference":[{"key":"39_CR1","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Faloutsos, C., and Swami, A. 1993. Efficient similarity search in sequence databases. In Proc. of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, USA, pp. 69\u201384.","DOI":"10.1007\/3-540-57301-1_5"},{"key":"39_CR2","doi-asserted-by":"crossref","unstructured":"Armstrong, J.S. (Ed.), 2001. Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer Academic Publishers.","DOI":"10.1007\/978-0-306-47630-3"},{"key":"39_CR3","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-1160-0","volume-title":"Robust diagnostic regression analysis","author":"A.C. Atkinson","year":"2000","unstructured":"Atkinson, A.C. and Riani, M. 2000. Robust Diagnostic Regression Analysis, New York: Springer."},{"key":"39_CR4","unstructured":"Berndt, D. and Clifford, J. 1994. Using dynamic time warping to find patterns in time series. In Proc. of the AAAI\u201994 Workshop on Knowledge Discovery in Databases, pp. 229\u2013248."},{"issue":"26","key":"39_CR5","first-page":"211","volume":"B","author":"G.E.P. Box","year":"1964","unstructured":"Box, G.E.P. and Cox, D.R. 1964. An analysis of transformations. JRSS, B(26):211\u2013246.","journal-title":"JRSS"},{"key":"39_CR6","doi-asserted-by":"crossref","first-page":"1509","DOI":"10.1080\/01621459.1970.10481180","volume":"65","author":"G.E.P. Box","year":"1970","unstructured":"Box, G.E.P. and Pierce, D.A. 1970. Distribution of the residual autocorrelations in autoregressive-integrated moving-average time series models. Journal of the American Statistical Association, 65:1509\u20131526.","journal-title":"Journal of the American Statistical Association"},{"key":"39_CR7","unstructured":"Bradley, P.S. and Fayyad, U.M. 1998. Refining initial points for k-means clustering. In Proc. of the 15th International Conference on Machine Learning, Madison, WI, USA, pp. 91\u201399."},{"key":"39_CR8","unstructured":"Chan, K. and Fu, A.W. 1999. Efficient time series matching by wavelets. In Proc. of the 15th IEEE International conference on data engineering, Sydney, Australia, pp. 126\u2013133."},{"key":"39_CR9","volume-title":"The analysis of time series: An introduction","author":"C. Chatfield","year":"1996","unstructured":"Chatfield, C. 1996. The Analysis of Time Series: An Introduction. London: Chapman & Hall."},{"key":"39_CR10","doi-asserted-by":"crossref","unstructured":"Chu, K. and Wong, M. 1999. Fast time-series searching with scaling and shifting. In Proc. of the 18th ACM Symposium on Principles of Database Systems, Philadelphia, PA, USA, pp. 237\u2013248.","DOI":"10.1145\/303976.304000"},{"key":"39_CR11","first-page":"3","volume":"6","author":"R.B. Cleveland","year":"1990","unstructured":"Cleveland, R.B., Cleveland, W.S., McRae, J.E., and Terpenning, I. 1990. Stl: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6:3 \u201373.","journal-title":"Journal of Official Statistics"},{"key":"39_CR12","volume-title":"The elements of graphing data. Summit","author":"W.S. Cleveland","year":"1994","unstructured":"Cleveland, W.S. 1994. The Elements of Graphing Data. NJ: Hobart Press Summit."},{"key":"39_CR13","unstructured":"Cox, D.R. 1984. Long-range dependence: A review. In Proc. of the Statistics: An Appraisal, 50th Anniversary Conference, Iowa State Statistical Laboratory, pp. 55\u201374."},{"key":"39_CR14","unstructured":"Debregeas, A. and Hebrail, G. 1998. Interactive interpretation of kohonen maps applied to curves. In Proc. of the 4th International Conference of Knowledge Discovery and Data Mining, New York, NY, USA, pp. 179\u2013183."},{"key":"39_CR15","doi-asserted-by":"crossref","unstructured":"Dellaert, F.T. Polzin, T., and Waibel, A. 1996. Recognizing emotion in speech. In Proc. of the 4th International Conference on Spoken Language Processing, Philadelphia, PA, USA, pp. 1970\u20131973.","DOI":"10.1109\/ICSLP.1996.608022"},{"key":"39_CR16","unstructured":"Deng, K. Moore, A. and Nechyba, M.C. 1997. Learning to recognize time series: Combining arma models with memory-based learning. In Proc. of the International Symposium on Computational Intelligence in Robotics and Automation, pp. 246\u201350."},{"key":"39_CR17","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1023\/A:1009868929893","volume":"3","author":"P. Domingos","year":"1999","unstructured":"Domingos, P. 1999. Role of occam's razor in knowledge discovery. Data Mining and Knowledge Discovery, 3:409\u2013425.","journal-title":"Data Mining and Knowledge Discovery"},{"key":"39_CR18","doi-asserted-by":"crossref","unstructured":"Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. 1994. Fast subsequence matching in time-series databases. In Proc. of the ACM SIGMOD International Conference on Management of Data, Minneapolis, MN, USA, pp. 419\u2013429.","DOI":"10.1145\/191839.191925"},{"key":"39_CR19","doi-asserted-by":"crossref","unstructured":"Ge, X. and Smyth, P. 2000. Deformable markov model templates for time-series pattern matching. In Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Massachusetts, pp. 81\u201390.","DOI":"10.1145\/347090.347109"},{"key":"39_CR20","doi-asserted-by":"crossref","unstructured":"Grossi, L. and Riani, M. 2002. Robust time series analysis through the forward search. In Proc. of the 15th Symposium of Computational Statistics, Berlin, Germany, pp. 521\u2013526.","DOI":"10.1007\/978-3-642-57489-4_80"},{"key":"39_CR21","doi-asserted-by":"crossref","unstructured":"Halkidi, M., Batistakis, Y., and Vazirgiannis, M. 2001. On clustering validation techniques. Journal of Intelligent Information Systems (JIIS), 17(2\/3):107\u2013145.","DOI":"10.1023\/A:1012801612483"},{"key":"39_CR22","doi-asserted-by":"crossref","DOI":"10.1515\/9780691218632","volume-title":"Time series analysis","author":"J.D. Hamilton","year":"1994","unstructured":"Hamilton, J.D. 1994. Time Series Analysis. Princeton University Press, Princeton."},{"key":"39_CR23","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4899-7266-8","volume-title":"A handbook of small data sets","author":"D.J. Hand","year":"1994","unstructured":"Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., and Ostrowski, E. 1994. A Handbook of Small Data Sets. Chapman & Hall, London."},{"key":"39_CR24","doi-asserted-by":"crossref","first-page":"728","DOI":"10.1093\/biomet\/86.3.728","volume":"86","author":"J.L. Harvill","year":"1999","unstructured":"Harvill, J.L., Ray, B.K., and Harvill, J.L. 1999. Testing for nonlinearity in a vector time series. Biometrika, 86:728\u2013734.","journal-title":"Biometrika"},{"key":"39_CR25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2307\/2347679","volume":"38","author":"J. Haslett","year":"1989","unstructured":"Haslett, J. and Raftery, A.E. 1989. Space-time modelling with long-memory dependence: Assessing ireland's wind power resource (with discussion). Applied Statistics, 38:1\u201350.","journal-title":"Applied Statistics"},{"key":"39_CR26","volume-title":"Chaos and nonlinear dynamics: An introduction for scientists and engineers","author":"R.C. Hilborn","year":"1994","unstructured":"Hilborn, R.C. 1994. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York."},{"key":"39_CR27","unstructured":"Honkela, T. 1997. Self-Organizing maps in natural language processing, Ph.D. Thesis, Neural Networks Research Centre, Helsinki University of Technology."},{"issue":"12","key":"39_CR28","doi-asserted-by":"crossref","first-page":"1898","DOI":"10.1029\/WR020i012p01898","volume":"20","author":"J.R.M. Hosking","year":"1984","unstructured":"Hosking, J.R.M. 1984. Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20(12):1898\u20131908.","journal-title":"Water Resources Research"},{"key":"39_CR29","unstructured":"Huntala, Y., Karkkainen, J., and Toivonen, H. 1999. Mining for similarities in aligned time series using wavelets. In Proc. of the Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Orlando, FL, pp. 150\u2013160."},{"key":"39_CR30","unstructured":"Indyk, P., Koudas, N., and Muthukrishnan, S. 2000. Identifying representative trends in massive time series data sets using sketches. In Proc. of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, pp. 363\u2013372."},{"issue":"3","key":"39_CR31","first-page":"265","volume":"31","author":"A.K. Jain","year":"1999","unstructured":"Jain, A.K., Murty, M.N., and Flynn, P.J. 1999. Data clustering: A review. ACM Computing Surveys, 31(3):265\u2013323.","journal-title":"ACM Computing Surveys"},{"key":"39_CR32","doi-asserted-by":"crossref","unstructured":"Kalpakis, K., Gada, D., and Puttagunta, V. 2001. Distance measures for effective clustering of arima time-series. In Proc. of the IEEE International Conference on Data Mining, San Jose, CA, pp. 273\u2013280.","DOI":"10.1109\/ICDM.2001.989529"},{"key":"39_CR33","unstructured":"Keogh, E. and Smyth, P. 1997. A probabilistic approach to fast pattern matching in time series databases. In Proc. of the 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, USA, pp. 20\u201324."},{"key":"39_CR34","doi-asserted-by":"crossref","unstructured":"Keogh, E., Chakrabarti, K., Pazzani, M.J., and Mehrotra, S. 2001. Locally adaptive dimensionality reduction for indexing large time series databases. In Proc. of the ACM SIGMOD Conference on Management of Data, Santa Barbara, CA, USA, pp. 151\u2013162.","DOI":"10.1145\/375663.375680"},{"key":"39_CR35","unstructured":"Keogh, E. and Folias, T. 2002. The ucr Time Series Data Mining Archive. http:\/www.cs.ucr.edu\/\u223ceamonn \/TSDMA\/index.html."},{"key":"39_CR36","doi-asserted-by":"crossref","unstructured":"Keogh, E. and Kasetty, S. 2002. On the need for time series data mining benchmarks: A survey and empirical demonstration. In Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 102\u2013111.","DOI":"10.1145\/775047.775062"},{"key":"39_CR37","doi-asserted-by":"crossref","unstructured":"Keogh, E., Lin, J., and Truppel, W. 2003. Clustering of time series subsequences is meaningless: Implications for past and future research. In Proc. of the 3rd IEEE International Conference on Data Mining, Melbourne, FL, USA, pp. 115\u2013122.","DOI":"10.1109\/ICDM.2003.1250910"},{"key":"39_CR38","doi-asserted-by":"crossref","unstructured":"Keogh, E., Lonardi, S., and Ratanamahatana, C. 2004. Towards parameter-free data mining. In Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, pp. 206\u2013215.","DOI":"10.1145\/1014052.1014077"},{"key":"39_CR39","unstructured":"Kohonen, T., Oja, M., Kaski, S., and Somervuo, P. 2002. Self\u2013Organizing map. Biennial report 2000\u20132001."},{"issue":"6","key":"39_CR40","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1162\/089976604773717621","volume":"16","author":"T. Lange","year":"2004","unstructured":"Lange, T., Roth, V., Braun, M.L., and Buhmann, J.M. 2004. Stability-based validation of clustering solutions. Neural Computation, 16(6):1299\u20131323.","journal-title":"Neural Computation"},{"issue":"4","key":"39_CR41","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1162\/108118200753392109","volume":"4","author":"T.-H. Lee","year":"2001","unstructured":"Lee, T.-H. 2001. Neural network test and nonparametric kernel test for neglected nonlinearity in regression models. Studies in Nonlinear Dynamics & Econometrics, 4(4):169\u2013182.","journal-title":"Studies in Nonlinear Dynamics & Econometrics"},{"key":"39_CR42","doi-asserted-by":"crossref","unstructured":"Lin, J., Vlachos, M., Keogh, E., and Gunopulos, D. 2004. Iterative incremental clustering of time series. In Proc. of the IX Conference on Extending Database Technology, Crete, Greece, pp. 106\u2013122.","DOI":"10.1007\/978-3-540-24741-8_8"},{"key":"39_CR43","unstructured":"Lu, Z.-Q. 1996. Estimating lyapunov exponents in chaotic time series with locally weighted regression, Ph.D. Thesis, Department of Statistics, University of North Carolina."},{"key":"39_CR44","unstructured":"Makridakis, S., Wheelwright, S.C., and Hyndman, R.J. 1998. Forecasting methods and applications. John Wiley & Sons, Inc."},{"key":"39_CR45","unstructured":"M\u00f6rchen, F. 2003. Time series feature extraction for data mining using dwt and dft. Technical Report No. 33."},{"key":"39_CR46","first-page":"49","volume-title":"International journal of computer research","author":"A. Nanopoulos","year":"2001","unstructured":"Nanopoulos, A., Alcock, R., and Manolopoulos, Y. 2001. Feature-based Classification of Time-Series Data. International Journal of Computer Research. NY: Nova Science Publishers, pp. 49\u201361."},{"key":"39_CR47","doi-asserted-by":"crossref","unstructured":"Popivanov, I. and Miller, R.J. 2002. Similarity search over time series data using wavelets. In Proc. of the 18th International Conference on Data Engineering, San Jose, CA, USA, pp. 212\u2013221.","DOI":"10.1109\/ICDE.2002.994711"},{"key":"39_CR48","volume-title":"Data preparation for data mining","author":"D. Pyle","year":"1999","unstructured":"Pyle, D. 1999. Data Preparation for Data Mining. San Francisco, California: Morgan Kaufmann Publishers, Inc."},{"key":"39_CR49","unstructured":"Ratanamahatana, C.A. and Keogh, E. 2005. Three myths about dynamic time warping. In Proc. of the SIAM International Conference on Data Mining, Newport Beach, CA, pp. 506\u2013510."},{"key":"39_CR50","unstructured":"Rocca, M.L. and Perna, C. 2004. Subsampling model selection in neural networks for nonlinear time series analysis. In Proc. of the 36th Symposium on the Interface, Baltimore, Maryland,"},{"key":"39_CR51","unstructured":"Rose, O. 1996. Estimation of the Hurst Parameter of Long-Range Dependent Time Series. Research Report, 137."},{"key":"39_CR52","doi-asserted-by":"crossref","first-page":"115","DOI":"10.2307\/2347973","volume":"31","author":"P. Royston","year":"1982","unstructured":"Royston, P. 1982. An extension of shapiro and wilk's w test for normality to large samples. Applied Statistics, 31:115\u2013124.","journal-title":"Applied Statistics"},{"key":"39_CR53","first-page":"1438","volume":"32","author":"J.D. Scargle","year":"2000","unstructured":"Scargle, J.D. 2000. Timing: New methods for astronomical time series analysis. Bulletin of the American Astronomical Society, 32:1438.","journal-title":"Bulletin of the American Astronomical Society"},{"key":"39_CR54","doi-asserted-by":"crossref","unstructured":"Ter\u00e4esvirta, T, Lin, C.F, and Granger, C.W.J. 1993. Power of the neural network linearity test. Journal of Time Series Analysis, 14(209\u2013220)","DOI":"10.1111\/j.1467-9892.1993.tb00139.x"},{"issue":"1","key":"39_CR55","first-page":"3","volume":"1","author":"T. Ter\u00e4esvirta","year":"1996","unstructured":"Ter\u00e4esvirta, T. 1996. Power properties of linearity tests for time series. Studies in Nonlinear Dynamics & Econometrics, 1(1):3\u201310.","journal-title":"Studies in Nonlinear Dynamics & Econometrics"},{"key":"39_CR56","unstructured":"Van Laerhoven, K. 2001. Combining the knohonen self-organizing map and k-means for on-line classification of sensor data. Artificial neural networks, lecture notes in artificial intelligence. Springer Verlag, pp. 464\u201370."},{"key":"39_CR57","first-page":"550","volume-title":"The mit encyclopedia of the cognitive science","author":"C.S. Wallace","year":"1999","unstructured":"Wallace, C.S. 1999. Minimum Description Length. The Mit Encyclopedia of the Cognitive Science. The MIT Press, London, England, pp. 550\u2013551."},{"key":"39_CR58","doi-asserted-by":"crossref","unstructured":"Wang, C. and Wang, X.S. 2000. Supporting content-based searches on time series via approximation. In Proc. of the 12th International Conference on Scientific and Statistical Database Management, Berlin, Germany, pp. 69\u201381.","DOI":"10.1109\/SSDM.2000.869779"},{"key":"39_CR59","unstructured":"Willinger, W, Paxon, V, and Taqqu, M.S. 1996. Self-similarity and heavy tails: Structural modeling of network traffic. A Practical Guide to Heavy Tails: Statistical Techniques and Applications: 27\u201353."},{"key":"39_CR60","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/0167-2789(85)90011-9","volume":"16","author":"A. Wolf","year":"1985","unstructured":"Wolf, A. Swift, J.B. Swinney, H.L. and Vastano, J.A. 1985. Determining lyapunov exponents from a time series. PHYSICA D, 16:285\u2013317.","journal-title":"PHYSICA D"},{"issue":"2","key":"39_CR61","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1111\/1467-9868.00240","volume":"62","author":"S.N. Wood","year":"2000","unstructured":"Wood, S.N. 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Statist. Soc. B, 62(2):413\u2013428.","journal-title":"J. R. Statist. Soc. B"}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-005-0039-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10618-005-0039-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-005-0039-x","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,27]],"date-time":"2021-07-27T07:40:02Z","timestamp":1627371602000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10618-005-0039-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,5,16]]},"references-count":61,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2006,9,25]]}},"alternative-id":["39"],"URL":"https:\/\/doi.org\/10.1007\/s10618-005-0039-x","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2006,5,16]]}}}