{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:13:31Z","timestamp":1740143611416,"version":"3.37.3"},"reference-count":62,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T00:00:00Z","timestamp":1673395200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T00:00:00Z","timestamp":1673395200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100002322","name":"capes","doi-asserted-by":"crossref","award":["88887.475847\/2020-00"],"id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"crossref"}]},{"name":"c4ai-ibm-fapesp","award":["2019\/07665-4"]},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","award":["2021\/08213-0"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Lang Resources & Evaluation"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1007\/s10579-022-09633-0","type":"journal-article","created":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T08:02:47Z","timestamp":1673424167000},"page":"273-300","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["SetembroBR: a social media corpus for depression and anxiety disorder prediction"],"prefix":"10.1007","volume":"58","author":[{"given":"Wesley Ramos dos","family":"Santos","sequence":"first","affiliation":[]},{"given":"Rafael Lage","family":"de Oliveira","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7270-1477","authenticated-orcid":false,"given":"Ivandr\u00e9","family":"Paraboni","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,11]]},"reference":[{"key":"9633_CR1","doi-asserted-by":"publisher","first-page":"6088","DOI":"10.1007\/s10489-020-02131-2","volume":"51","author":"J Aguilera","year":"2021","unstructured":"Aguilera, J., Far\u00edas, D. I. H., Ortega-Mendoza, R. M., & y G\u00f3mez, M. M. (2021). Depression and anorexia detection in social media as a one-class classification problem. Applied Intelligence, 51, 6088\u20136103. https:\/\/doi.org\/10.1007\/s10489-020-02131-2.","journal-title":"Applied Intelligence"},{"issue":"4","key":"9633_CR2","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1177\/2167702617747074","volume":"6","author":"M Al-Mosaiwi","year":"2018","unstructured":"Al-Mosaiwi, M., & Johnstone, T. (2018). In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clinical Psychological Science, 6(4), 529\u2013542. https:\/\/doi.org\/10.1177\/2167702617747074.","journal-title":"Clinical Psychological Science"},{"key":"9633_CR3","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1016\/j.procs.2019.12.107","volume":"163","author":"S Almouzini","year":"2019","unstructured":"Almouzini, S., khemakhem, M., & Alageel, A. (2019). Detecting Arabic depressed users from Twitter data. Procedia Computer Science, 163, 257\u2013265. https:\/\/doi.org\/10.1016\/j.procs.2019.12.107.","journal-title":"Procedia Computer Science"},{"key":"9633_CR4","doi-asserted-by":"publisher","DOI":"10.1176\/appi.books.9780890425596","volume-title":"Diagnostic and statistical manual of mental disorders","author":"American Psychiatric Association","year":"2013","unstructured":"American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Association. https:\/\/doi.org\/10.1176\/appi.books.9780890425596.","edition":"5"},{"key":"9633_CR5","doi-asserted-by":"publisher","unstructured":"Arag\u00f3n, M.E., L\u00f3pez-Monroy, A.P., Gonz\u00e1lez-Gurrola, L.C., & y\u00a0G\u00f3mez, M.M. (2019). Detecting depression in social media using fine-grained emotions. In: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Minneapolis, USA (pp. 1481\u20131486). https:\/\/doi.org\/10.18653\/v1\/N19-1151.","DOI":"10.18653\/v1\/N19-1151"},{"key":"9633_CR6","doi-asserted-by":"crossref","unstructured":"Aschbrenner, K.A., Naslund, J.A., Grinley, T., Bienvenida, J.C.M., Bartels, S.J., & Brunette, M. (2018). A survey of online and mobile technology use at peer support agencies. Psychiatric Quarterly (pp. 1\u201310).","DOI":"10.1007\/s11126-017-9561-4"},{"key":"9633_CR7","doi-asserted-by":"publisher","unstructured":"Bak, M., Chin, J., & Chiu, C. (2022). Mental health pandemic during the COVID-19 outbreak: Calls for help on social media. https:\/\/doi.org\/10.48550\/ARXIV.2203.00237.","DOI":"10.48550\/ARXIV.2203.00237"},{"issue":"4","key":"9633_CR8","doi-asserted-by":"publisher","first-page":"290","DOI":"10.1111\/eip.12237","volume":"11","author":"ML Birnbaum","year":"2017","unstructured":"Birnbaum, M. L., Rizvi, A. F., Correll, C. U., Kane, J. M., & Confino, J. (2017). Role of social media and the internet in pathways to care for adolescents and young adults with psychotic disorders and nonpsychotic mood disorders. Early Intervention in Psychiatry, 11(4), 290\u2013295.","journal-title":"Early Intervention in Psychiatry"},{"key":"9633_CR9","doi-asserted-by":"publisher","unstructured":"Briciu, A., & Lupea, M. (2018). Studying the language of mental illness in romanian social media. In IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), (pp. 21\u201328), https:\/\/doi.org\/10.1109\/ICCP.2018.8516436.","DOI":"10.1109\/ICCP.2018.8516436"},{"key":"9633_CR10","doi-asserted-by":"crossref","unstructured":"Brunette, M., Achtyes, E., Pratt, S., Stilwell, K., Opperman, M., Guarino, S., & Kay-Lambkin, F. (2019). Use of smartphones, computers and social media among people with smi: opportunity for intervention. Community Mental Health Journal (pp. 1\u20136).","DOI":"10.1007\/s10597-019-00431-7"},{"issue":"2","key":"9633_CR11","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1111\/papt.12222","volume":"92","author":"S Bucci","year":"2019","unstructured":"Bucci, S., Schwannauer, M., & Berry, N. (2019). The digital revolution and its impact on mental health care. Psychology and Psychotherapy: Theory, Research and Practice, 92(2), 277\u2013297.","journal-title":"Psychology and Psychotherapy: Theory, Research and Practice"},{"key":"9633_CR12","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.patrec.2020.07.001","volume":"138","author":"SG Burdisso","year":"2020","unstructured":"Burdisso, S. G., Errecalde, M., & y G\u00f3mez, M. M. (2020). t-SS3: A text classifier with dynamic n-grams for early risk detection over text streams. Pattern Recognition Letters, 138, 130\u2013137. https:\/\/doi.org\/10.1016\/j.patrec.2020.07.001.","journal-title":"Pattern Recognition Letters"},{"issue":"6","key":"9633_CR13","doi-asserted-by":"publisher","DOI":"10.2196\/12554","volume":"21","author":"F Cacheda","year":"2019","unstructured":"Cacheda, F., Fernandez, D., Novoa, F. J., & Carneiro, V. (2019). Early detection of depression: Social network analysis and random forest techniques. Journal of Medical Internet Research, 21(6), e12554. https:\/\/doi.org\/10.2196\/12554.","journal-title":"Journal of Medical Internet Research"},{"key":"9633_CR14","doi-asserted-by":"publisher","DOI":"10.1038\/s41746-020-0233-7","author":"S Chancellor","year":"2020","unstructured":"Chancellor, S., & Choudhury, M. D. (2020). Methods in predictive techniques for mental health status on social media: A critical review. npj Digital Medicine. https:\/\/doi.org\/10.1038\/s41746-020-0233-7.","journal-title":"npj Digital Medicine"},{"key":"9633_CR15","unstructured":"Choudhury, M.D., Gamon, M., Counts, S., & Horvitz, E. (2013). Predicting depression via social media. In: International AAAI Conference on Web and Social Media (ICWSM), AAAI."},{"key":"9633_CR16","doi-asserted-by":"publisher","unstructured":"Coello-Guilarte, L., Ortega-Mendoza, R.M., Villasenor-Pineda, L., & y\u00a0G\u00f3mez, M.M. (2019). Crosslingual depression detection in twitter using bilingual word alignments. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2019). Lecture Notes in Computer Science vol. 11696, Springer International Publishing, Cham, (pp. 49\u201361), https:\/\/doi.org\/10.1007\/978-3-030-28577-7_2.","DOI":"10.1007\/978-3-030-28577-7_2"},{"key":"9633_CR17","unstructured":"Cohan, A., Desmet, B., Yates, A., Soldaini, L., MacAvaney, S., & v Goharian,. (2018). SMHD: a large-scale resource for exploring online language usage for multiple mental health conditions. 27th International Conference on Computational Linguistics (pp. 1485\u20131497). Santa Fe, USA: Association for Computational Linguistics."},{"key":"9633_CR18","doi-asserted-by":"publisher","first-page":"31","DOI":"10.3115\/v1\/W15-1204","volume-title":"Second workshop on computational linguistics and clinical psychology: From linguistic signal to clinical reality","author":"G Coppersmith","year":"2015","unstructured":"Coppersmith, G., Dredze, M., Harman, C., Kristy, H., & Mitchell, M. (2015). CLPsych 2015 shared task: Depression and PTSD on Twitter. Second workshop on computational linguistics and clinical psychology: From linguistic signal to clinical reality (pp. 31\u201339). Association for Computational Linguistics."},{"key":"9633_CR19","unstructured":"Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Association for Computational Linguistics, (pp. 4171\u20134186)."},{"key":"9633_CR45","unstructured":"dos Santos, W. R., Funabashi, A. M. M., & Paraboni, I. (2020). Searching Brazilian Twitter for signs of mental health issues. 12th International Conference on Language Resources and Evaluation (LREC-2020) (pp. 6113\u20136119). Marseille, France: ELRA."},{"key":"9633_CR44","doi-asserted-by":"publisher","unstructured":"dos Santos, W.R., & Paraboni, I. (2019). Moral Stance Recognition and Polarity Classification from Twitter and Elicited Text. In: Recents Advances in Natural Language Processing (RANLP-2019), Varna, Bulgaria, (pp. 1069\u20131075), https:\/\/doi.org\/10.26615\/978-954-452-056-4_123.","DOI":"10.26615\/978-954-452-056-4_123"},{"issue":"4","key":"9633_CR46","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1080\/13614568.2020.1722761","volume":"25","author":"WR dos Santos","year":"2020","unstructured":"dos Santos, W. R., Ramos, R. M. S., & Paraboni, I. (2020). Computational personality recognition from Facebook text: Psycholinguistic features, words and facets. New Review of Hypermedia and Multimedia, 25(4), 268\u2013287. https:\/\/doi.org\/10.1080\/13614568.2020.1722761.","journal-title":"New Review of Hypermedia and Multimedia"},{"key":"9633_CR20","series-title":"Knowledge and social media","first-page":"249","volume-title":"HCI International 2020\u2014Late breaking papers: Interaction","author":"S Dutta","year":"2020","unstructured":"Dutta, S., & Choudhury, M. D. (2020). Characterizing anxiety disorders with online social and interactional networks. Knowledge and social media. HCI International 2020\u2014Late breaking papers: Interaction (pp. 249\u2013264). Springer International Publishing."},{"key":"9633_CR21","doi-asserted-by":"publisher","unstructured":"Ernala, S.K., Birnbaum, M.L., Candan, K.A., Rizvi, A.F., Sterling, W.A., Kane, J.M., & Choudhury, M.D. (2019). Methodological gaps in predicting mental health states from social media: Triangulating diagnostic signals. In: 2019 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, USA, (pp. 1\u201316), https:\/\/doi.org\/10.1145\/3290605.3300364.","DOI":"10.1145\/3290605.3300364"},{"key":"9633_CR22","doi-asserted-by":"publisher","first-page":"4713","DOI":"10.1007\/s12652-020-01726-4","volume":"11","author":"FT Giuntini","year":"2020","unstructured":"Giuntini, F. T., Cazzolato, M. T., de Jesus Dutra dos Reis, M., Campbell, A. T., Traina, A. J. M., & Ueyama, J. (2020). A review on recognizing depression in social networks: challenges and opportunities. Journal of Ambient Intelligence and Humanized Computing, 11, 4713\u20134729. https:\/\/doi.org\/10.1007\/s12652-020-01726-4.","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"key":"9633_CR23","unstructured":"Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., & Alu\u00edsio, S. (2017). Portuguese word embeddings: Evaluating on word analogies and natural language tasks. In: 11th Brazilian Symposium in Information and Human Language Technology - STIL, Uberl\u00e2ndia, Brazil, (pp. 122\u2013131)."},{"key":"9633_CR24","doi-asserted-by":"publisher","unstructured":"Katchapakirin, K., Wongpatikaseree, K., Yomaboot, P., & Kaewpitakkun, Y. (2018). Facebook social media for depression detection in the thai community. In: 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), (pp. 1\u20136), https:\/\/doi.org\/10.1109\/JCSSE.2018.8457362.","DOI":"10.1109\/JCSSE.2018.8457362"},{"key":"9633_CR25","doi-asserted-by":"crossref","unstructured":"Kumar, A., Sharma, A., & Arora, A. (2019). Anxious depression prediction in real-time social data. In: International Conference on Advances in Engineering Science Management & Technology (ICAESMT), Dehradun, India.","DOI":"10.2139\/ssrn.3383359"},{"issue":"6","key":"9633_CR26","doi-asserted-by":"publisher","first-page":"e14199","DOI":"10.2196\/14199","volume":"21","author":"A Leis","year":"2019","unstructured":"Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I., & Sanz, F. (2019). Detecting signs of depression in Tweets in Spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research, 21(6), e14199. https:\/\/doi.org\/10.2196\/14199.","journal-title":"Journal of Medical Internet Research"},{"key":"9633_CR27","first-page":"407","volume-title":"SenseMood: Depression detection on social media","author":"C Lin","year":"2020","unstructured":"Lin, C., Hu, P., Su, H., Li, S., Mei, J., Zhou, J., & Leung, H. (2020). SenseMood: Depression detection on social media (pp. 407\u2013411). Association for Computing Machinery."},{"key":"9633_CR28","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1007\/978-3-319-44564-9_3","volume-title":"Experimental IR meets multilinguality, multimodality, and interaction","author":"DE Losada","year":"2016","unstructured":"Losada, D. E., & Crestani, F. (2016). A test collection for research on depression and language use. Experimental IR meets multilinguality, multimodality, and interaction (pp. 28\u201339). Springer."},{"key":"9633_CR29","first-page":"346","volume-title":"Lecture Notes in Computer Science","author":"DE Losada","year":"2017","unstructured":"Losada, D. E., Crestani, F., & Parapar, J. (2017). eRISK 2017: CLEF lab on early risk prediction on the internet: Experimental foundations. Lecture Notes in Computer Science (Vol. 10456, pp. 346\u2013360). Springer."},{"key":"9633_CR30","first-page":"343","volume-title":"Lecture notes in computer science","author":"DE Losada","year":"2018","unstructured":"Losada, D. E., Crestani, F., & Parapar, J. (2018). Overview of eRisk: early risk prediction on the Internet. Lecture notes in computer science (Vol. 11018, pp. 343\u2013361). Springer."},{"key":"9633_CR31","doi-asserted-by":"crossref","unstructured":"Losada, D.E., Crestani, F., & Parapar, J. (2019). Overview of eRisk 2019 Early Risk Prediction on the Internet. In: Lecture Notes in Computer Science vol 11696.","DOI":"10.1007\/978-3-030-28577-7_27"},{"key":"9633_CR32","doi-asserted-by":"publisher","unstructured":"Loveys, K., Crutchley, P., Wyatt, E., & Coppersmith, G. (2017). Small but mighty: Affective micropatterns for quantifying mental health from social media language. In: Fourth Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Association for Computational Linguistics, Vancouver, Canada, (pp. 85\u201395), https:\/\/doi.org\/10.18653\/v1\/W17-3110.","DOI":"10.18653\/v1\/W17-3110"},{"key":"9633_CR33","doi-asserted-by":"publisher","unstructured":"Lynn, V., Goodman, A., Niederhoffer, K., Loveys, K., Resnik, P., & Schwartz, H.A. (2018). CLPsych 2018 shared task: Predicting current and future psychological health from childhood essays. In: Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, Association for Computational Linguistics, New Orleans, USA, (pp. 37\u201346), https:\/\/doi.org\/10.18653\/v1\/W18-0604.","DOI":"10.18653\/v1\/W18-0604"},{"key":"9633_CR34","doi-asserted-by":"crossref","unstructured":"Mann, P., Paes, A., & Matsushima, E.H. (2020). See and read: Detecting depression symptoms in higher education students using multimodal social media data. In Proceedings of the International AAAI Conference on Web and Social Media, (pp. 440\u2013451).","DOI":"10.1609\/icwsm.v14i1.7313"},{"issue":"2","key":"9633_CR35","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1007\/BF02295996","volume":"12","author":"Q McNemar","year":"1947","unstructured":"McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153\u2013157. https:\/\/doi.org\/10.1007\/BF02295996.","journal-title":"Psychometrika"},{"issue":"1","key":"9633_CR36","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1146\/annurev.soc.27.1.415","volume":"27","author":"M McPherson","year":"2001","unstructured":"McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415\u2013444. https:\/\/doi.org\/10.1146\/annurev.soc.27.1.415.","journal-title":"Annual Review of Sociology"},{"key":"9633_CR37","unstructured":"Minist\u00e9rio da Sa\u00fade do Brasil. (2022). Vigitel Brasil 2020: vigil\u00e2ncia de fatores de risco e prote\u00e7\u00e3o para doen\u00e7as cr\u00f4nicas por inqu\u00e9rito telef\u00f4nico: estimativas sobre frequ\u00eancia e distribui\u00e7\u00e3o sociodemogr\u00e1fica de fatores de risco e prote\u00e7\u00e3o para doen\u00e7as cr\u00f4nicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2021. Minist\u00e9rio da Sa\u00fade, Bras\u00edlia: Tech. rep."},{"key":"9633_CR38","doi-asserted-by":"publisher","unstructured":"Nascimento, R., Parreira, P., dos Santos, G., & Guedes, G.P. (2018). Identificando sinais de comportamento depressivo em redes sociais. In: Anais do VII Brazilian Workshop on Social Network Analysis and Mining, SBC, Porto Alegre, Brazil, https:\/\/doi.org\/10.5753\/brasnam.2018.3597.","DOI":"10.5753\/brasnam.2018.3597"},{"key":"9633_CR39","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s41347-020-00134-x","volume":"5","author":"JA Naslund","year":"2020","unstructured":"Naslund, J. A., Bondre, A., Torous, J., & Aschbrenner, K. A. (2020). Social media and mental health: Benefits, risks, and opportunities for research and practice. Journal of Technology in Behavioral Science, 5, 245\u2013257. https:\/\/doi.org\/10.1007\/s41347-020-00134-x.","journal-title":"Journal of Technology in Behavioral Science"},{"key":"9633_CR40","unstructured":"Paraboni, I. (1997). Uma arquitetura para a resolu\u00e7\u00e3o de refer\u00eancias pronominais possessivas no processamento de textos em l\u00edngua portuguesa. Master\u2019s thesis, PUCRS, Porto Alegre."},{"key":"9633_CR41","doi-asserted-by":"crossref","unstructured":"Paraboni, I., & de\u00a0Lima, V.L.S. (1998). Possessive pronominal anaphor resolution in Portuguese written texts. In Proceedings of the 17th international conference on Computational linguistics-Volume 2, Association for Computational Linguistics, (pp. 1010\u20131014).","DOI":"10.3115\/980432.980735"},{"issue":"10","key":"9633_CR42","doi-asserted-by":"publisher","DOI":"10.2196\/jmir.2718","volume":"15","author":"S Park","year":"2013","unstructured":"Park, S., Lee, S. W., Kwak, J., Cha, M., & Jeong, B. (2013). Activities on Facebook reveal the depressive state of users. Journal of Medical Internet Research, 15(10), e217.","journal-title":"Journal of Medical Internet Research"},{"key":"9633_CR43","doi-asserted-by":"publisher","unstructured":"Pavan, M.C., dos Santos, W.R., & Paraboni, I. (2020). Twitter Moral Stance Classification using Long Short-Term Memory Networks. In: 9th Brazilian Conference on Intelligent Systems (BRACIS). LNAI 12319, Springer, (pp. 636\u2013647), https:\/\/doi.org\/10.1007\/978-3-030-61377-8_45.","DOI":"10.1007\/978-3-030-61377-8_45"},{"issue":"5","key":"9633_CR47","doi-asserted-by":"publisher","DOI":"10.2196\/jmir.9267","volume":"20","author":"EM Seabrook","year":"2018","unstructured":"Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of Facebook and Twitter status updates. Journal of Medical Internet Research, 20(5), e168. https:\/\/doi.org\/10.2196\/jmir.9267.","journal-title":"Journal of Medical Internet Research"},{"key":"9633_CR48","doi-asserted-by":"crossref","unstructured":"Semenov, A., Natekin, A., Nikolenko, S., Upravitelev, P., Trofimov, M., & Kharchenko, M. (2015). Discerning depression propensity among participants of suicide and depression-related groups of vk.com. In: Analysis of Images, Social Networks and Texts, Springer International Publishing, Cham, (pp. 24\u201335).","DOI":"10.1007\/978-3-319-26123-2_3"},{"key":"9633_CR49","doi-asserted-by":"publisher","unstructured":"Shen, G., Jia, J., Nie, L., Feng, F., Zhang, C., Hu, T., Chua, T.S., & Zhu, W. (2017). Depression detection via harvesting social media: A multimodal dictionary learning solution. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, (pp. 3838\u20133844), https:\/\/doi.org\/10.24963\/ijcai.2017\/536.","DOI":"10.24963\/ijcai.2017\/536"},{"key":"9633_CR50","doi-asserted-by":"publisher","unstructured":"Shen, J.H., & Rudzicz, F. (2017). Detecting anxiety on Reddit. In Fourth Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Association for Computational Linguistics, Vancouver, Canada, (pp. 58\u201365), https:\/\/doi.org\/10.18653\/v1\/W17-3107.","DOI":"10.18653\/v1\/W17-3107"},{"key":"9633_CR51","doi-asserted-by":"publisher","unstructured":"Shen, T., Jia, J., Shen, G., Feng, F., He, X., Luan, H., Tang, J., Tiropanis, T., Chua, T.S., & Hall, W. (2018). Cross-domain depression detection via harvesting social media. In Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, (pp. 1611\u20131617), https:\/\/doi.org\/10.24963\/ijcai.2018\/223.","DOI":"10.24963\/ijcai.2018\/223"},{"key":"9633_CR52","doi-asserted-by":"publisher","unstructured":"Shrestha, A., & Spezzano, F. (2019). Detecting depressed users in online forums. In: 2019 IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (pp. 945\u2013951), https:\/\/doi.org\/10.1145\/3341161.3343511.","DOI":"10.1145\/3341161.3343511"},{"key":"9633_CR53","unstructured":"Song, H., You, J., Chung, J.W., & Park, J.C. (2018). Feature attention network: Interpretable depression detection from social media. In 32nd Pacific Asia Conference on Language, Information and Computation, Association for Computational Linguistics, Hong Kong."},{"key":"9633_CR54","doi-asserted-by":"publisher","unstructured":"Souza, F., Nogueira, R., & Lotufo, R. (2020a). BERTimbau: pretrained BERT models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent Systems (BRACIS) - LNCS 12319, Springer, Cham, https:\/\/doi.org\/10.1007\/978-3-030-61377-8_28.","DOI":"10.1007\/978-3-030-61377-8_28"},{"key":"9633_CR55","first-page":"121","volume-title":"Anais do XXXV Simp\u00f3sio Brasileiro de Bancos de Dados","author":"V Souza","year":"2020","unstructured":"Souza, V., Nobre, J., & Becker, K. (2020). Characterization of anxiety, depression, and their comorbidity from texts of social networks. Anais do XXXV Simp\u00f3sio Brasileiro de Bancos de Dados (pp. 121\u2013132). SBC."},{"key":"9633_CR56","doi-asserted-by":"publisher","DOI":"10.1038\/s41398-020-0780-3","author":"C Su","year":"2020","unstructured":"Su, C., Xu, Z., Pathak, J., & Wang, F. (2020). Deep learning in mental health outcome research: A scoping review. Translational Psychiatry. https:\/\/doi.org\/10.1038\/s41398-020-0780-3.","journal-title":"Translational Psychiatry"},{"key":"9633_CR57","doi-asserted-by":"publisher","first-page":"105","DOI":"10.24193\/jebp.2017.1.7","volume":"17","author":"R Trifu","year":"2017","unstructured":"Trifu, R., Nemes, B., Bodea-Hategan, C., & Cozman, D. (2017). Linguistic indicators of language in major depressive disorder (MDD). An evidence based research. Journal of Evidence-Based Psychotherapies, 17, 105\u2013128. https:\/\/doi.org\/10.24193\/jebp.2017.1.7.","journal-title":"Journal of Evidence-Based Psychotherapies"},{"key":"9633_CR58","unstructured":"Trotzek, M., Koitka, S., & Friedrich, C.M. (2018). Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Transactions on Knowledge and Data Engineering."},{"key":"9633_CR59","doi-asserted-by":"crossref","unstructured":"Tsugawa, S., Kikuchi, Y., Kishino, F., Nakajima, K., Itoh, Y., & Ohsaki, H. (2015). Recognizing depression from twitter activity. 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 3187\u20133196). New York, USA: Association for Computing Machinery.","DOI":"10.1145\/2702123.2702280"},{"key":"9633_CR60","doi-asserted-by":"publisher","unstructured":"Yates, A., Cohan, A., & Goharian, N. (2017). Depression and self-harm risk assessment in online forums. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Copenhagen, Denmark, (pp. 2968\u20132978), https:\/\/doi.org\/10.18653\/v1\/D17-1322.","DOI":"10.18653\/v1\/D17-1322"},{"key":"9633_CR61","doi-asserted-by":"publisher","unstructured":"Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee, T., Thirunarayan, K., Pathak, J., & Sheth, A. (2017). Semi-supervised approach to monitoring clinical depressive symptoms in social media. In IEEE\/ACM International Conference on Advances in Social Network Analysis and Mining, (pp. 1191\u20131198), https:\/\/doi.org\/10.1145\/3110025.3123028.","DOI":"10.1145\/3110025.3123028"},{"issue":"4","key":"9633_CR62","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0226248","volume":"15","author":"AH Yazdavar","year":"2020","unstructured":"Yazdavar, A. H., Mahdavinejad, M. S., Bajaj, G., Romine, W., Sheth, A., Monadjemi, A. H., et al. (2020). Multimodal mental health analysis in social media. PLoS ONE, 15(4), 1\u201327. https:\/\/doi.org\/10.1371\/journal.pone.0226248.","journal-title":"PLoS ONE"}],"container-title":["Language Resources and Evaluation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10579-022-09633-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10579-022-09633-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10579-022-09633-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T12:04:48Z","timestamp":1710417888000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10579-022-09633-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,11]]},"references-count":62,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024,3]]}},"alternative-id":["9633"],"URL":"https:\/\/doi.org\/10.1007\/s10579-022-09633-0","relation":{},"ISSN":["1574-020X","1574-0218"],"issn-type":[{"type":"print","value":"1574-020X"},{"type":"electronic","value":"1574-0218"}],"subject":[],"published":{"date-parts":[[2023,1,11]]},"assertion":[{"value":"21 December 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 January 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}