{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:24:00Z","timestamp":1740122640373,"version":"3.37.3"},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"19","license":[{"start":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T00:00:00Z","timestamp":1720742400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T00:00:00Z","timestamp":1720742400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Key Technologies Research and Development Program of China","award":["No.2022ZD0119501"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No.62072288","52374221"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","award":["ZR2022MF268"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1007\/s10489-024-05500-3","type":"journal-article","created":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T05:02:04Z","timestamp":1720760524000},"page":"9253-9268","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["DGNN-MN: Dynamic Graph Neural Network via memory regenerate and neighbor propagation"],"prefix":"10.1007","volume":"54","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3131-2723","authenticated-orcid":false,"given":"Chao","family":"Li","sequence":"first","affiliation":[]},{"given":"Runshuo","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinhu","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Zhongying","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Hua","family":"Duan","sequence":"additional","affiliation":[]},{"given":"Qingtian","family":"Zeng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,12]]},"reference":[{"key":"5500_CR1","doi-asserted-by":"crossref","unstructured":"Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 1269\u20131278","DOI":"10.1145\/3292500.3330895"},{"key":"5500_CR2","unstructured":"Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein M (2020) Temporal graph networks for deep learning on dynamic graphs. arXiv:2006.10637"},{"key":"5500_CR3","unstructured":"Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. arXiv:2002.07962"},{"key":"5500_CR4","doi-asserted-by":"crossref","unstructured":"Zhang Y, Xiong Y, Li D, Shan C, Ren K, Zhu Y (2021) Cope: modeling continuous propagation and evolution on interaction graph. In: Proceedings of the 30th ACM international conference on information & knowledge management. pp 2627\u20132636","DOI":"10.1145\/3459637.3482419"},{"key":"5500_CR5","doi-asserted-by":"crossref","unstructured":"Ma Y, Guo Z, Ren Z, Tang J, Yin D (2020) Streaming graph neural networks. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval. pp 719\u2013728","DOI":"10.1145\/3397271.3401092"},{"key":"5500_CR6","first-page":"3049","volume":"2020","author":"Z Zhang","year":"2020","unstructured":"Zhang Z, Bu J, Ester M, Zhang J, Yao C, Li Z, Wang C (2020) Learning temporal interaction graph embedding via coupled memory networks. Proc Web Conf 2020:3049\u20133055","journal-title":"Proc Web Conf"},{"key":"5500_CR7","unstructured":"Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2019) Self-attention with functional time representation learning. Adv Neur Inf Process Syst 32"},{"key":"5500_CR8","doi-asserted-by":"crossref","unstructured":"Hu W, Yang Y, Cheng Z, Yang C, Ren X (2021) Time-series event prediction with evolutionary state graph. In: Proceedings of the 14th ACM international conference on web search and data mining. pp 580\u2013588","DOI":"10.1145\/3437963.3441827"},{"key":"5500_CR9","doi-asserted-by":"crossref","unstructured":"Chang X, Liu X, Wen J, Li S, Fang Y, Song L, Qi Y (2020) Continuous-time dynamic graph learning via neural interaction processes. In: Proceedings of the 29th ACM international conference on information & knowledge management. pp 145\u2013154","DOI":"10.1145\/3340531.3411946"},{"key":"5500_CR10","unstructured":"Huang W, Zhang T, Rong Y, Huang J (2018) Adaptive sampling towards fast graph representation learning. Adv Neur Inf Process Syst 31"},{"key":"5500_CR11","unstructured":"Kang H, Ho J-H, Mesquita D, P\u00e9rez J, Souza AH (2021) Online graph nets"},{"issue":"5","key":"5500_CR12","first-page":"4741","volume":"35","author":"M Zhang","year":"2022","unstructured":"Zhang M, Wu S, Yu X, Liu Q, Wang L (2022) Dynamic graph neural networks for sequential recommendation. IEEE Trans Knowl Data Eng 35(5):4741\u20134753","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"5500_CR13","doi-asserted-by":"crossref","unstructured":"Wang X, Lyu D, Li M, Xia Y, Yang Q, Wang X, Wang X, Cui P, Yang Y, Sun B, et al. (2021) Apan: Asynchronous propagation attention network for real-time temporal graph embedding. In: Proceedings of the 2021 international conference on management of data. pp 2628\u20132638","DOI":"10.1145\/3448016.3457564"},{"key":"5500_CR14","first-page":"5363","volume":"34","author":"A Pareja","year":"2020","unstructured":"Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl T, Leiserson C (2020) Evolvegcn: Evolving graph convolutional networks for dynamic graphs. Proc AAAI Conf Artif Intell 34:5363\u20135370","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"5500_CR15","doi-asserted-by":"crossref","unstructured":"Hu B, Wu Z, Zhou J, Liu Z, Huangfu Z, Zhang Z, Chen C (2022) Merit: Learning multi-level representations on temporal graphs. IJCAI","DOI":"10.24963\/ijcai.2022\/288"},{"issue":"8","key":"5500_CR16","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735\u20131780","journal-title":"Neural Comput"},{"key":"5500_CR17","unstructured":"Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555"},{"key":"5500_CR18","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.aiopen.2021.01.001","volume":"1","author":"J Zhou","year":"2020","unstructured":"Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: A review of methods and applications. AI open. 1:57\u201381","journal-title":"AI open."},{"key":"5500_CR19","doi-asserted-by":"crossref","unstructured":"Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph domains. In: Proceedings. 2005 IEEE international joint conference on neural networks, 2005., vol. 2. IEEE, pp 729\u2013734","DOI":"10.1109\/IJCNN.2005.1555942"},{"key":"5500_CR20","unstructured":"Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907"},{"key":"5500_CR21","unstructured":"Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Adv Neur Inf Process Syst 30"},{"key":"5500_CR22","unstructured":"Veli\u010dkovi\u0107 P, Cucurull G, Casanova A, Romero A, Lio P, Bengio, Y (2017) Graph attention networks. arXiv:1710.10903"},{"key":"5500_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2023\/8342104","volume":"2023","author":"UA Bhatti","year":"2023","unstructured":"Bhatti UA, Tang H, Wu G, Marjan S, Hussain A (2023) Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence. Int J Intell Syst 2023:1\u201328","journal-title":"Int J Intell Syst"},{"key":"5500_CR24","unstructured":"Du Y, Wang L, Feng D, Wang G, Ji S, Gomes CP, Ma Z-M et al (2024) A new perspective on building efficient and expressive 3d equivariant graph neural networks. Adv Neur Inf Process Syst 36"},{"key":"5500_CR25","unstructured":"Veli\u010dkovi\u0107 P, Fedus W, Hamilton WL, Li\u00f2 P, Bengio Y, Hjelm RD (2018) Deep graph infomax. arXiv:1809.10341"},{"key":"5500_CR26","doi-asserted-by":"crossref","unstructured":"Xia W, Li Y, Tian J, Li S (2021) Forecasting interaction order on temporal graphs. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. pp 1884\u20131893","DOI":"10.1145\/3447548.3467341"},{"key":"5500_CR27","doi-asserted-by":"crossref","unstructured":"Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: The world wide web conference. pp 2022\u20132032","DOI":"10.1145\/3308558.3313562"},{"key":"5500_CR28","doi-asserted-by":"publisher","first-page":"120004","DOI":"10.1016\/j.ins.2023.120004","volume":"658","author":"J Fu","year":"2023","unstructured":"Fu J, Li C, Zhao Z, Zeng Q (2023) Heterogeneous graph knowledge distillation neural network incorporating multiple relations and cross-semantic interactions. Inf Sci 658:120004","journal-title":"Inf Sci"},{"key":"5500_CR29","doi-asserted-by":"crossref","unstructured":"Li C, Fu J, Yan Y, Zhao Z, Zeng Q (2024) Higher order heterogeneous graph neural network based on node attribute enhancement. Expert Syst Appl 238:122404","DOI":"10.1016\/j.eswa.2023.122404"},{"key":"5500_CR30","unstructured":"Yu L, Sun L, Du B, Lv W (2024) Towards better dynamic graph learning: New architecture and unified library. Adv Neur Inf Process Syst 36"},{"issue":"1","key":"5500_CR31","doi-asserted-by":"publisher","first-page":"38","DOI":"10.9781\/ijimai.2023.02.001","volume":"8","author":"R Saxena","year":"2023","unstructured":"Saxena R, Pati SP, Kumar A, Jadeja M, Vyas P, Bhateja V, Lin JCW (2023) An efficient bet-gcn approach for link prediction. IJIMAI. 8(1):38\u201352","journal-title":"IJIMAI."},{"key":"5500_CR32","doi-asserted-by":"crossref","unstructured":"Chen D, Wen J, Lv C (2023) A spatio-temporal attention graph convolutional networks for sea surface temperature prediction","DOI":"10.9781\/ijimai.2023.02.011"},{"key":"5500_CR33","first-page":"478","volume":"2023","author":"Y Zhang","year":"2023","unstructured":"Zhang Y, Xiong Y, Liao Y, Sun Y, Jin Y, Zheng X, Zhu Y (2023) Tiger: temporal interaction graph embedding with restarts. Proc ACM Web Conf 2023:478\u2013488","journal-title":"Proc ACM Web Conf"},{"key":"5500_CR34","doi-asserted-by":"crossref","unstructured":"Luo L, Haffari G, Pan S (2023) Graph sequential neural ode process for link prediction on dynamic and sparse graphs. In: Proceedings of the sixteenth ACM international conference on web search and data mining. pp. 778\u2013786","DOI":"10.1145\/3539597.3570465"},{"key":"5500_CR35","first-page":"969","volume":"2018","author":"GH Nguyen","year":"2019","unstructured":"Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2019) Continuous-time dynamic network embeddings. Comp Proc Web Conf 2018:969\u2013976","journal-title":"Comp Proc Web Conf"},{"issue":"3","key":"5500_CR36","first-page":"1032","volume":"33","author":"Y Zhang","year":"2019","unstructured":"Zhang Y, Xiong Y, Kong X, Niu Z, Zhu Y (2019) Ige+: A framework for learning node embeddings in interaction graphs. IEEE Trans Knowl Data Eng 33(3):1032\u20131044","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"5500_CR37","doi-asserted-by":"crossref","unstructured":"Zhang Y, Xiong Y, Kong X, Zhu Y (2017) Learning node embeddings in interaction graphs. In: Proceedings of the 2017 ACM on conference on information and knowledge management. pp 397\u2013406","DOI":"10.1145\/3132847.3132918"},{"key":"5500_CR38","unstructured":"Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: Learning representations over dynamic graphs. In: International conference on learning representations"},{"issue":"6","key":"5500_CR39","doi-asserted-by":"publisher","first-page":"1332","DOI":"10.14778\/3583140.3583150","volume":"16","author":"Y Li","year":"2023","unstructured":"Li Y, Shen Y, Chen L, Yuan M (2023) Zebra: When temporal graph neural networks meet temporal personalized pagerank. Proc VLDB Endow 16(6):1332\u20131345","journal-title":"Proc VLDB Endow"},{"key":"5500_CR40","first-page":"32928","volume":"35","author":"F Poursafaei","year":"2022","unstructured":"Poursafaei F, Huang S, Pelrine K, Rabbany R (2022) Towards better evaluation for dynamic link prediction. Adv Neural Inf Process Syst 35:32928\u201332941","journal-title":"Adv Neural Inf Process Syst"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-024-05500-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-024-05500-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-024-05500-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,15]],"date-time":"2024-08-15T13:11:55Z","timestamp":1723727515000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-024-05500-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,12]]},"references-count":40,"journal-issue":{"issue":"19","published-print":{"date-parts":[[2024,10]]}},"alternative-id":["5500"],"URL":"https:\/\/doi.org\/10.1007\/s10489-024-05500-3","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"type":"print","value":"0924-669X"},{"type":"electronic","value":"1573-7497"}],"subject":[],"published":{"date-parts":[[2024,7,12]]},"assertion":[{"value":"1 May 2024","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 July 2024","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical Approval"}},{"value":"There is the consent of all authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"Not applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Human and Animal Ethics"}},{"value":"There is the consent of all authors.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}},{"value":"The authors declare that there is no competing interests.","order":6,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}