{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,17]],"date-time":"2024-05-17T05:52:38Z","timestamp":1715925158127},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"21","license":[{"start":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T00:00:00Z","timestamp":1691539200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T00:00:00Z","timestamp":1691539200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No. 62276099"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100018542","name":"Natural Science Foundation of Sichuan Province","doi-asserted-by":"publisher","award":["No.2023NSFSC0501"],"id":[{"id":"10.13039\/501100018542","id-type":"DOI","asserted-by":"publisher"}]},{"name":"SWPU Innovation Base","award":["No.642"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1007\/s10489-023-04860-6","type":"journal-article","created":{"date-parts":[[2023,8,9]],"date-time":"2023-08-09T14:02:26Z","timestamp":1691589746000},"page":"25511-25524","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Dual channel group-aware graph convolutional networks for collaborative filtering"],"prefix":"10.1007","volume":"53","author":[{"given":"Jinsong","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Kaiwen","family":"Huang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8391-6510","authenticated-orcid":false,"given":"Ping","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,9]]},"reference":[{"key":"4860_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2022.02.033","volume":"595","author":"R Abolghasemi","year":"2022","unstructured":"Abolghasemi R, Engelstad P, Herrera-Viedma E, Yazidi A (2022) A personality-aware group recommendation system based on pairwise preferences. Inf Sci 595:1\u201317","journal-title":"Inf Sci"},{"key":"4860_CR2","doi-asserted-by":"publisher","first-page":"79182","DOI":"10.1109\/ACCESS.2020.2990799","volume":"8","author":"A Belhadi","year":"2020","unstructured":"Belhadi A, Djenouri Y, Lin JCW, Cano A (2020) A data-driven approach for twitter hashtag recommendation. IEEE Access 8:79182\u201379191","journal-title":"IEEE Access"},{"key":"4860_CR3","doi-asserted-by":"publisher","first-page":"10569","DOI":"10.1109\/ACCESS.2020.2964682","volume":"8","author":"A Belhadi","year":"2020","unstructured":"Belhadi A, Djenouri Y, Lin JCW, Zhang C, Cano A (2020) Exploring pattern mining algorithms for hashtag retrieval problem. IEEE Access 8:10569\u201310583","journal-title":"IEEE Access"},{"key":"4860_CR4","doi-asserted-by":"crossref","unstructured":"Chen CM, Wang CJ, Tsai MF, Yang YH (2019) Collaborative similarity embedding for recommender systems. The World Wide Web Conference","DOI":"10.1145\/3308558.3313493"},{"key":"4860_CR5","doi-asserted-by":"crossref","unstructured":"Chen J, Zhang H, He X, Nie L, Liu W, Chua TS (2017) Attentive collaborative filtering: Multimedia recommendation with item- and component-level attention. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval","DOI":"10.1145\/3077136.3080797"},{"key":"4860_CR6","unstructured":"Berg RVD, Kipf TN, Welling M (2018) Graph convolutional matrix completion. In: Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining"},{"key":"4860_CR7","doi-asserted-by":"publisher","first-page":"2409","DOI":"10.1007\/s10462-021-10063-7","volume":"55","author":"S Dhelim","year":"2022","unstructured":"Dhelim S, Aung N, Bouras MA, Ning H, Cambria E (2022) A survey on personality-aware recommendation systems. Artif Intell Rev 55:2409\u20132454","journal-title":"Artif Intell Rev"},{"key":"4860_CR8","doi-asserted-by":"crossref","unstructured":"Fan H, Zhong Y, Zeng G, Ge C (2022) Improving recommender system via knowledge graph based exploring user preference. Appl Intell 1\u201313","DOI":"10.1007\/s10489-021-02872-8"},{"key":"4860_CR9","doi-asserted-by":"crossref","unstructured":"Fan W, Ma Y, Li Q, He Y, Zhao YE, Tang J, Yin D (2019) Graph neural networks for social recommendation. The World Wide Web Conference","DOI":"10.1145\/3308558.3313488"},{"key":"4860_CR10","doi-asserted-by":"crossref","unstructured":"Fayyaz Z, Ebrahimian M, Nawara D, Ibrahim A, Kashef RF (2020) Recommendation systems: Algorithms, challenges, metrics, and business opportunities. Appl Sci","DOI":"10.3390\/app10217748"},{"key":"4860_CR11","doi-asserted-by":"crossref","unstructured":"Forbes P, Zhu M (2011) Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation. In: Proceedings of the fifth ACM conference on Recommender systems, pp 261\u2013264","DOI":"10.1145\/2043932.2043979"},{"key":"4860_CR12","unstructured":"Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249\u2013256. JMLR Workshop and Conference Proceedings"},{"key":"4860_CR13","doi-asserted-by":"crossref","unstructured":"Gu T, Li P, Huang K (2022) Context-aware graph collaborative recommendation without feature entanglement. In: Collaborative Computing: Networking, Applications and Worksharing: 17th EAI International Conference, CollaborateCom 2021, Virtual Event, October 16-18, 2021, Proceedings, Part I, pp 259\u2013276. Springer","DOI":"10.1007\/978-3-030-92635-9_16"},{"issue":"4","key":"4860_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2827872","volume":"5","author":"FM Harper","year":"2015","unstructured":"Harper FM, Konstan JA (2015) The movielens datasets: History and context. ACM Trans Interact Intell Syst 5(4):1\u201319","journal-title":"ACM Trans Interact Intell Syst"},{"key":"4860_CR15","doi-asserted-by":"crossref","unstructured":"He X, Deng K, Wang X, Li Y, Zhang Y, Wang M (2020) Lightgcn: Simplifying and powering graph convolution network for recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","DOI":"10.1145\/3397271.3401063"},{"key":"4860_CR16","doi-asserted-by":"publisher","first-page":"2354","DOI":"10.1109\/TKDE.2018.2831682","volume":"30","author":"X He","year":"2018","unstructured":"He X, He Z, Song J, Liu Z, Jiang YG, Chua TS (2018) Nais: Neural attentive item similarity model for recommendation. IEEE Trans Knowl Data Eng 30:2354\u20132366","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"4860_CR17","doi-asserted-by":"crossref","unstructured":"He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua TS (2017) Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web","DOI":"10.1145\/3038912.3052569"},{"issue":"4","key":"4860_CR18","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1145\/582415.582418","volume":"20","author":"K J\u00e4rvelin","year":"2002","unstructured":"J\u00e4rvelin K, Kek\u00e4l\u00e4inen J (2002) Cumulated gain-based evaluation of ir techniques. ACM Trans Inf Syst 20(4):422\u2013446","journal-title":"ACM Trans Inf Syst"},{"key":"4860_CR19","doi-asserted-by":"crossref","unstructured":"Kabbur S, Ning X, Karypis G (2013) Fism: factored item similarity models for top-n recommender systems. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","DOI":"10.1145\/2487575.2487589"},{"key":"4860_CR20","doi-asserted-by":"crossref","unstructured":"Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 426\u2013434","DOI":"10.1145\/1401890.1401944"},{"issue":"8","key":"4860_CR21","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MC.2009.263","volume":"42","author":"Y Koren","year":"2009","unstructured":"Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30\u201337","journal-title":"Computer"},{"key":"4860_CR22","doi-asserted-by":"crossref","unstructured":"Krichene W, Rendle S (2020) On sampled metrics for item recommendation. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","DOI":"10.1145\/3394486.3403226"},{"key":"4860_CR23","doi-asserted-by":"crossref","unstructured":"Lian D, Liu R, Ge Y, Zheng K, Xie X, Cao L (2017) Discrete content-aware matrix factorization. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","DOI":"10.1145\/3097983.3098008"},{"key":"4860_CR24","doi-asserted-by":"crossref","unstructured":"Lin Z, Tian C, Hou Y, Zhao WX (2022) Improving graph collaborative filtering with neighborhoodenriched contrastive learning. Proceedings of the ACM Web Conference 2022","DOI":"10.1145\/3485447.3512104"},{"key":"4860_CR25","unstructured":"Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11)"},{"key":"4860_CR26","unstructured":"Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) Bpr: Bayesian personalized ranking from implicit feedback. In: UAI"},{"key":"4860_CR27","first-page":"2830","volume":"2022","author":"Y Tao","year":"2022","unstructured":"Tao Y, Li Y, Zhang S, Hou Z, Wu Z (2022) Revisiting graph based social recommendation: A distillation enhanced social graph network. Proceedings of the ACM Web Conference 2022:2830\u20132838","journal-title":"Proceedings of the ACM Web Conference"},{"key":"4860_CR28","doi-asserted-by":"crossref","unstructured":"Wang H, Zhao M, Xie X, Li W, Guo M (2019) Knowledge graph convolutional networks for recommender systems. In: The world wide web conference, pp 3307\u20133313","DOI":"10.1145\/3308558.3313417"},{"key":"4860_CR29","doi-asserted-by":"crossref","unstructured":"Wang X, He X, Cao Y, Liu M, Chua TS (2019) Kgat: Knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 950\u2013958","DOI":"10.1145\/3292500.3330989"},{"key":"4860_CR30","doi-asserted-by":"crossref","unstructured":"Wang X, He X, Wang M, Feng F, Chua TS (2019) Neural graph collaborative filtering. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","DOI":"10.1145\/3331184.3331267"},{"key":"4860_CR31","doi-asserted-by":"crossref","unstructured":"Wang X, Jin H, Zhang A, He X, Xu T, Chua TS (2020) Disentangled graph collaborative filtering. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","DOI":"10.1145\/3397271.3401137"},{"key":"4860_CR32","doi-asserted-by":"publisher","first-page":"5329","DOI":"10.1609\/aaai.v33i01.33015329","volume":"33","author":"X Wang","year":"2019","unstructured":"Wang X, Wang D, Xu C, He X, Cao Y, Chua TS (2019) Explainable reasoning over knowledge graphs for recommendation. Proceedings of the AAAI conference on artificial intelligence 33:5329\u20135336","journal-title":"Proceedings of the AAAI conference on artificial intelligence"},{"issue":"6","key":"4860_CR33","doi-asserted-by":"publisher","DOI":"10.1007\/s11704-021-0261-8","volume":"16","author":"J Wu","year":"2022","unstructured":"Wu J, He X, Wang X, Wang Q, Chen W, Lian J, Xie X (2022) Graph convolution machine for context-aware recommender system. Frontiers of Computer Science 16(6):166614","journal-title":"Frontiers of Computer Science"},{"key":"4860_CR34","doi-asserted-by":"crossref","unstructured":"Wu J, Wang X, Feng F, He X, Chen L, Lian J, Xie X (2021) Self-supervised graph learning for recommendation. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval","DOI":"10.1145\/3404835.3462862"},{"issue":"10","key":"4860_CR35","doi-asserted-by":"publisher","first-page":"4753","DOI":"10.1109\/TKDE.2020.3048414","volume":"34","author":"L Wu","year":"2020","unstructured":"Wu L, Li J, Sun P, Hong R, Ge Y, Wang M (2020) Diffnet++: A neural influence and interest diffusion network for social recommendation. IEEE Trans Knowl Data Eng 34(10):4753\u20134766","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"4860_CR36","doi-asserted-by":"crossref","unstructured":"Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative denoising auto-encoders for top-n recommender systems","DOI":"10.1145\/2835776.2835837"},{"key":"4860_CR37","doi-asserted-by":"crossref","unstructured":"Xin X, Karatzoglou A, Arapakis I, Jose JM (2020) Self-supervised reinforcement learning for recommender systems. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","DOI":"10.1145\/3397271.3401147"},{"key":"4860_CR38","doi-asserted-by":"crossref","unstructured":"Yang JH, Chen CM, Wang CJ, Tsai MF (2018) Hop-rec: high-order proximity for implicit recommendation. Proceedings of the 12th ACM Conference on Recommender Systems","DOI":"10.1145\/3240323.3240381"},{"key":"4860_CR39","doi-asserted-by":"crossref","unstructured":"Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018) Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","DOI":"10.1145\/3219819.3219890"},{"key":"4860_CR40","doi-asserted-by":"crossref","unstructured":"Yu J, Yin H, Li J, Wang Q, Hung NQV, Zhang X (2021) Self-supervised multi-channel hypergraph convolutional network for social recommendation. Proceedings of the Web Conference 2021","DOI":"10.1145\/3442381.3449844"},{"key":"4860_CR41","doi-asserted-by":"crossref","unstructured":"Yu L, Zhang C, Pei S, Sun G, Zhang X (2018) Walkranker: A unified pairwise ranking model with multiple relations for item recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32","DOI":"10.1609\/aaai.v32i1.11866"},{"key":"4860_CR42","doi-asserted-by":"crossref","unstructured":"Zhao WX, Chen J, Wang P, Gu Q, Wen JR (2020) Revisiting alternative experimental settings for evaluating top-n item recommendation algorithms. Proceedings of the 29th ACM International Conference on Information & Knowledge Management (2020)","DOI":"10.1145\/3340531.3412095"},{"key":"4860_CR43","doi-asserted-by":"crossref","unstructured":"Zhao WX, Mu S, Hou Y, Lin Z, Li K, Chen Y, Lu Y, Wang H, Tian C, Pan X, Min Y, Feng Z, Fan X, Chen X, Wang P, Ji W, Li Y, Wang X, Wen JR (2021) Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms. Proceedings of the 30th ACM International Conference on Information & Knowledge Management","DOI":"10.1145\/3459637.3482016"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-023-04860-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-023-04860-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-023-04860-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,23]],"date-time":"2023-10-23T14:21:25Z","timestamp":1698070885000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-023-04860-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,9]]},"references-count":43,"journal-issue":{"issue":"21","published-print":{"date-parts":[[2023,11]]}},"alternative-id":["4860"],"URL":"https:\/\/doi.org\/10.1007\/s10489-023-04860-6","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,8,9]]},"assertion":[{"value":"30 June 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 August 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"On behalf of all authors, the corresponding author states that there is no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interests"}}]}}