{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T07:54:15Z","timestamp":1725954855287},"reference-count":35,"publisher":"Springer Science and Business Media LLC","issue":"16","license":[{"start":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T00:00:00Z","timestamp":1678838400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T00:00:00Z","timestamp":1678838400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1007\/s10489-023-04552-1","type":"journal-article","created":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T23:26:04Z","timestamp":1679873164000},"page":"19724-19741","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Lung cancer classification and identification framework with automatic nodule segmentation screening using machine learning"],"prefix":"10.1007","volume":"53","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4151-5708","authenticated-orcid":false,"given":"Mohammad H.","family":"Alshayeji","sequence":"first","affiliation":[]},{"given":"Sa\u2019ed","family":"Abed","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,15]]},"reference":[{"issue":"1","key":"4552_CR1","doi-asserted-by":"publisher","first-page":"396","DOI":"10.1080\/16878507.2021.1981753","volume":"14","author":"X Chen","year":"2021","unstructured":"Chen X, Duan Q, Wu R, Yang Z (2021) Segmentation of lung computed tomography images based on SegNet in the diagnosis of lung cancer. J Radiat Res Appl Sci 14(1):396\u2013403. https:\/\/doi.org\/10.1080\/16878507.2021.1981753","journal-title":"J Radiat Res Appl Sci"},{"key":"4552_CR2","unstructured":"\u201cCancer (n.d.)\u201d https:\/\/www.who.int\/news-room\/fact-sheets\/detail\/cancer (accessed Mar. 20, 2022)"},{"issue":"1","key":"4552_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-022-09122-y","volume":"12","author":"K Somsunun","year":"2022","unstructured":"Somsunun K, Prapamontol T, Pothirat C, Liwsrisakun C, Pongnikorn D, Fongmoon D, Chantara S, Wongpoomchai R, Naksen W, Autsavapromporn N, Tokonami S (2022) Estimation of lung cancer deaths attributable to indoor radon exposure in upper northern Thailand. Sci Rep 12(1):1\u201310. https:\/\/doi.org\/10.1038\/s41598-022-09122-y","journal-title":"Sci Rep"},{"issue":"11","key":"4552_CR4","doi-asserted-by":"publisher","first-page":"6752","DOI":"10.3390\/IJERPH19116752","volume":"19","author":"NP Mbeje","year":"2022","unstructured":"Mbeje NP, Ginindza T, Jafta N (2022) Epidemiological Study of Risk Factors for Lung Cancer in KwaZulu-Natal, South Africa. Int J Environ Res Pub Health 19(11):6752. https:\/\/doi.org\/10.3390\/IJERPH19116752","journal-title":"Int J Environ Res Pub Health"},{"key":"4552_CR5","unstructured":"Goncalves S, Fong P-C, Blokhina M (2022) Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay,\u201d Am J Cancer Res, vol. 12, no. 1, p. 1. Accessed: Oct. 18, 2022. [Online]. Available:\/pmc\/articles\/PMC8822269\/"},{"issue":"227","key":"4552_CR6","doi-asserted-by":"publisher","first-page":"519","DOI":"10.31729\/JNMA.5023","volume":"58","author":"N Maharjan","year":"2020","unstructured":"Maharjan N, Thapa N, Tu J (2020) Blood-based Biomarkers for Early Diagnosis of Lung Cancer: A Review Article. JNMA J Nepal Med Assoc 58(227):519. https:\/\/doi.org\/10.31729\/JNMA.5023","journal-title":"JNMA J Nepal Med Assoc"},{"key":"4552_CR7","doi-asserted-by":"publisher","unstructured":"Luo Z, Brubaker MA, Brudno M (2017) Size & texture-based classification of lung tumors with 3D CNNs. Proceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017, pp. 806\u2013814. https:\/\/doi.org\/10.1109\/WACV.2017.95","DOI":"10.1109\/WACV.2017.95"},{"issue":"15","key":"4552_CR8","doi-asserted-by":"publisher","first-page":"11065","DOI":"10.1007\/S00521-018-3895-1","volume":"32","author":"RVM da N\u00f3brega","year":"2018","unstructured":"da N\u00f3brega RVM, Rebou\u00e7as Filho PP, Rodrigues MB, da Silva SPP, Dourado J\u00fanior CMJM, de Albuquerque VHC (2018) Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks. Neural Comput Appl 32(15):11065\u201311082. https:\/\/doi.org\/10.1007\/S00521-018-3895-1","journal-title":"Neural Comput Appl"},{"key":"4552_CR9","doi-asserted-by":"publisher","unstructured":"Sathyan H, Panicker JV (2018) Lung Nodule Classification Using Deep ConvNets on CT Images. 2018 9th international conference on computing, communication and networking technologies, ICCCNT 2018. https:\/\/doi.org\/10.1109\/ICCCNT.2018.8494084","DOI":"10.1109\/ICCCNT.2018.8494084"},{"key":"4552_CR10","doi-asserted-by":"publisher","unstructured":"Bruntha PM et al (2021) Lung Nodule Classification using Shallow CNNs and Deep Transfer Learning CNNs. 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, pp. 1474\u20131478. https:\/\/doi.org\/10.1109\/ICACCS51430.2021.9441702","DOI":"10.1109\/ICACCS51430.2021.9441702"},{"key":"4552_CR11","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1007\/978-3-030-82469-3_19","volume":"256","author":"A Naik","year":"2021","unstructured":"Naik A, Edla DR, Dharavath R (2021) A deep feature concatenation approach for lung nodule classification. Lecture Notes Netw Syst 256:213\u2013226. https:\/\/doi.org\/10.1007\/978-3-030-82469-3_19","journal-title":"Lecture Notes Netw Syst"},{"key":"4552_CR12","doi-asserted-by":"publisher","unstructured":"Shaffie A et al. A novel framework for accurate and noninvasive pulmonary nodule diagnosis by integrating texture and contour descriptors. Proceedings - International Symposium on Biomedical Imaging, vol. 2021-April, pp. 1883\u20131886, 2021. https:\/\/doi.org\/10.1109\/ISBI48211.2021.9433830","DOI":"10.1109\/ISBI48211.2021.9433830"},{"key":"4552_CR13","doi-asserted-by":"publisher","first-page":"103347","DOI":"10.1016\/J.BSPC.2021.103347","volume":"72","author":"A Halder","year":"2022","unstructured":"Halder A, Chatterjee S, Dey D (2022) Adaptive morphology aided 2-pathway convolutional neural network for lung nodule classification. Biomed Signal Proc Contr 72:103347. https:\/\/doi.org\/10.1016\/J.BSPC.2021.103347","journal-title":"Biomed Signal Proc Contr"},{"key":"4552_CR14","doi-asserted-by":"publisher","unstructured":"Agnes SA, Immanuel Alex PS, Anitha J, Arun Solomon A (2021) Classification of Lung nodules using Convolutional long short-term Neural Network. Proceedings - 5th International Conference on Computing Methodologies and Communication, ICCMC 2021. pp. 1349\u20131353. https:\/\/doi.org\/10.1109\/ICCMC51019.2021.9418319","DOI":"10.1109\/ICCMC51019.2021.9418319"},{"key":"4552_CR15","doi-asserted-by":"publisher","first-page":"106230","DOI":"10.1016\/J.KNOSYS.2020.106230","volume":"204","author":"X Huang","year":"2020","unstructured":"Huang X, Lei Q, Xie T, Zhang Y, Hu Z, Zhou Q (2020) Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images. Knowl-Based Syst 204:106230. https:\/\/doi.org\/10.1016\/J.KNOSYS.2020.106230","journal-title":"Knowl-Based Syst"},{"key":"4552_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/J.LUNGCAN.2021.01.027","volume":"154","author":"MA Heuvelmans","year":"2021","unstructured":"Heuvelmans MA, van Ooijen PMA, Ather S, Silva CF, Han D, Heussel CP, Hickes W, Kauczor HU, Novotny P, Peschl H, Rook M, Rubtsov R, von Stackelberg O, Tsakok MT, Arteta C, Declerck J, Kadir T, Pickup L, Gleeson F, Oudkerk M (2021) Lung cancer prediction by deep learning to identify benign lung nodules. Lung Cancer 154:1\u20134. https:\/\/doi.org\/10.1016\/J.LUNGCAN.2021.01.027","journal-title":"Lung Cancer"},{"key":"4552_CR17","doi-asserted-by":"publisher","unstructured":"Suresh S, Mohan S (2019) NROI based feature learning for automated tumor stage classification of pulmonary lung nodules using deep convolutional neural networks. Journal of King Saud University - Computer and Information Sciences. https:\/\/doi.org\/10.1016\/J.JKSUCI.2019.11.013","DOI":"10.1016\/J.JKSUCI.2019.11.013"},{"key":"4552_CR18","doi-asserted-by":"publisher","first-page":"175859","DOI":"10.1109\/ACCESS.2020.3026080","volume":"8","author":"I Ali","year":"2020","unstructured":"Ali I, Muzammil M, Haq IU, Khaliq AA, Abdullah S (2020) Efficient lung nodule classification using transferable texture convolutional neural network. IEEE Access 8:175859\u2013175870. https:\/\/doi.org\/10.1109\/ACCESS.2020.3026080","journal-title":"IEEE Access"},{"key":"4552_CR19","doi-asserted-by":"publisher","first-page":"50301","DOI":"10.1109\/ACCESS.2021.3068896","volume":"9","author":"Y Chen","year":"2021","unstructured":"Chen Y, Wang Y, Hu F, Feng L, Zhou T, Zheng C (2021) Ldnnet: toward robust classification of lung nodule and cancer using lung dense neural network. IEEE Access 9:50301\u201350320. https:\/\/doi.org\/10.1109\/ACCESS.2021.3068896","journal-title":"IEEE Access"},{"key":"4552_CR20","doi-asserted-by":"publisher","unstructured":"Dang T, Nguyen TT, McCall J, Elyan E, Moreno-Garc\u00eda CF (2021) Two layer Ensemble of Deep Learning Models for Medical Image Segmentation. https:\/\/doi.org\/10.48550\/arxiv.2104.04809","DOI":"10.48550\/arxiv.2104.04809"},{"key":"4552_CR21","doi-asserted-by":"publisher","unstructured":"L. Nanni, D. Cuza, A. Lumini, A. Loreggia, S. Brahnam (2021) Deep ensembles in bioimage segmentation. https:\/\/doi.org\/10.48550\/arxiv.2112.12955","DOI":"10.48550\/arxiv.2112.12955"},{"issue":"2","key":"4552_CR22","doi-asserted-by":"publisher","first-page":"915","DOI":"10.1118\/1.3528204","volume":"38","author":"SG Armato","year":"2011","unstructured":"Armato SG et al (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915\u2013931. https:\/\/doi.org\/10.1118\/1.3528204","journal-title":"Med Phys"},{"key":"4552_CR23","unstructured":"\u201cGitHub - notmatthancock\/pylidc: An object relational mapping for the LIDC dataset using sqlalchemy.\u201d (n.d.) https:\/\/github.com\/notmatthancock\/pylidc (accessed Mar. 20, 2022)"},{"issue":"19","key":"4552_CR24","doi-asserted-by":"publisher","first-page":"28897","DOI":"10.1007\/s11042-021-10927-8","volume":"80","author":"M Alshayeji","year":"2021","unstructured":"Alshayeji M, Al-Buloushi J, Ashkanani A, Abed S (2021) Enhanced brain tumor classification using an optimized multilayered convolutional neural network architecture. Multimed Tools Appl 80(19):28897\u201328917. https:\/\/doi.org\/10.1007\/s11042-021-10927-8","journal-title":"Multimed Tools Appl"},{"key":"4552_CR25","doi-asserted-by":"publisher","unstructured":"Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11211 LNCS. pp. 833\u2013851. https:\/\/doi.org\/10.1007\/978-3-030-01234-2_49","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"4552_CR26","doi-asserted-by":"publisher","first-page":"103141","DOI":"10.1016\/J.BSPC.2021.103141","volume":"71","author":"MH Alshayeji","year":"2022","unstructured":"Alshayeji MH, Ellethy H, Abed S, Gupta R (2022) Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach. Biomed Signal Proc Contr 71:103141. https:\/\/doi.org\/10.1016\/J.BSPC.2021.103141","journal-title":"Biomed Signal Proc Contr"},{"key":"4552_CR27","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1016\/J.NEUNET.2020.01.017","volume":"124","author":"S Raghu","year":"2020","unstructured":"Raghu S, Sriraam N, Temel Y, Rao SV, Kubben PL (2020) EEG based multiclass seizure type classification using convolutional neural network and transfer learning. Neural Netw 124:202\u2013212. https:\/\/doi.org\/10.1016\/J.NEUNET.2020.01.017","journal-title":"Neural Netw"},{"key":"4552_CR28","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1109\/ICAAIC53929.2022.9792697","volume":"2022","author":"S Jaju","year":"2022","unstructured":"Jaju S, Chandak M (2022) A transfer learning model based on ResNet-50 for flower detection. Proc - Internat Conf Appl Artificial Intel Comput, ICAAIC 2022:307\u2013311. https:\/\/doi.org\/10.1109\/ICAAIC53929.2022.9792697","journal-title":"Proc - Internat Conf Appl Artificial Intel Comput, ICAAIC"},{"issue":"6","key":"4552_CR29","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84\u201390. https:\/\/doi.org\/10.1145\/3065386","journal-title":"Commun ACM"},{"key":"4552_CR30","doi-asserted-by":"publisher","unstructured":"Tan M, Le QV (2019) EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691\u201310700. https:\/\/doi.org\/10.48550\/arxiv.1905.11946","DOI":"10.48550\/arxiv.1905.11946"},{"issue":"20","key":"4552_CR31","doi-asserted-by":"publisher","first-page":"30539","DOI":"10.1007\/S11042-021-11066-W","volume":"80","author":"R Majidpourkhoei","year":"2021","unstructured":"Majidpourkhoei R, Alilou M, Majidzadeh K, Babazadehsangar A (2021) A novel deep learning framework for lung nodule detection in 3d CT images. Multimed Tools Appl 80(20):30539\u201330555. https:\/\/doi.org\/10.1007\/S11042-021-11066-W","journal-title":"Multimed Tools Appl"},{"issue":"20","key":"4552_CR32","doi-asserted-by":"publisher","first-page":"15989","DOI":"10.1007\/S00521-020-04787-W","volume":"32","author":"S Suresh","year":"2020","unstructured":"Suresh S, Mohan S (2020) ROI-based feature learning for efficient true positive prediction using convolutional neural network for lung cancer diagnosis. Neural Comput Applic 32(20):15989\u201316009. https:\/\/doi.org\/10.1007\/S00521-020-04787-W","journal-title":"Neural Comput Applic"},{"issue":"22","key":"4552_CR33","doi-asserted-by":"publisher","first-page":"15601","DOI":"10.1007\/S00521-021-06182-5","volume":"33","author":"SR Jena","year":"2021","unstructured":"Jena SR, George ST, Ponraj DN (2021) Lung cancer detection and classification with DGMM-RBCNN technique. Neural Comput Appl 33(22):15601\u201315617. https:\/\/doi.org\/10.1007\/S00521-021-06182-5","journal-title":"Neural Comput Appl"},{"key":"4552_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2022\/4185835","volume":"2022","author":"G Kasinathan","year":"2022","unstructured":"Kasinathan G, Jayakumar S (2022) Cloud-based lung tumor detection and stage classification using deep learning techniques. Biomed Res Int, vol 2022:1\u201317. https:\/\/doi.org\/10.1155\/2022\/4185835","journal-title":"Biomed Res Int, vol"},{"key":"4552_CR35","doi-asserted-by":"publisher","unstructured":"Joshi S et al (2022) Analysis of smart lung tumor detector and stage classifier using deep learning techniques with internet of things. https:\/\/doi.org\/10.1155\/2022\/4608145","DOI":"10.1155\/2022\/4608145"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-023-04552-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-023-04552-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-023-04552-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,28]],"date-time":"2023-08-28T05:18:10Z","timestamp":1693199890000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-023-04552-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,15]]},"references-count":35,"journal-issue":{"issue":"16","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["4552"],"URL":"https:\/\/doi.org\/10.1007\/s10489-023-04552-1","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,15]]},"assertion":[{"value":"26 February 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 March 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"No conflicts of interest are reported by the authors.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}