{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:29:49Z","timestamp":1727065789694},"reference-count":51,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2022,9,29]],"date-time":"2022-09-29T00:00:00Z","timestamp":1664409600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,9,29]],"date-time":"2022-09-29T00:00:00Z","timestamp":1664409600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51774219"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s10489-022-04121-y","type":"journal-article","created":{"date-parts":[[2022,9,29]],"date-time":"2022-09-29T06:04:01Z","timestamp":1664431441000},"page":"12541-12563","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Subspace multi-regularized non-negative matrix factorization for hyperspectral unmixing"],"prefix":"10.1007","volume":"53","author":[{"given":"Songtao","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3268-127X","authenticated-orcid":false,"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lian","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,29]]},"reference":[{"key":"4121_CR1","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1146\/annurev-food-032818-121155","volume":"10","author":"J Ma","year":"2019","unstructured":"Ma J, Sun D-W, Pu H, Cheng J-H, Wei Q (2019) Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications. Annu Rev Food Sci Technol 10:197\u2013220","journal-title":"Annu Rev Food Sci Technol"},{"issue":"6","key":"4121_CR2","doi-asserted-by":"crossref","first-page":"5131","DOI":"10.1109\/TGRS.2020.3021671","volume":"59","author":"C-I Chang","year":"2020","unstructured":"Chang C-I (2020) An effective evaluation tool for hyperspectral target detection: 3d receiver operating characteristic curve analysis. IEEE Trans Geosci Remote Sens 59(6):5131\u20135153","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"4121_CR3","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.inffus.2020.01.007","volume":"59","author":"M Imani","year":"2020","unstructured":"Imani M, Ghassemian H (2020) An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inform Fusion 59:59\u201383","journal-title":"Inform Fusion"},{"key":"4121_CR4","doi-asserted-by":"crossref","unstructured":"Pour AB, Zoheir B, Pradhan B, Hashim M (2021) Editorial for the Special issue: Multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas. Multidisciplinary Digital Publishing Institute","DOI":"10.3390\/rs13030519"},{"key":"4121_CR5","first-page":"1","volume":"60","author":"J Yao","year":"2022","unstructured":"Yao J, Hong D, Xu L, Meng D, Chanussot J, Xu Z (2022) Sparsity-enhanced convolutional decomposition: a novel tensor-based paradigm for blind hyperspectral unmixing. IEEE Trans Geosci Remote Sens 60:1\u201314","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"2","key":"4121_CR6","doi-asserted-by":"crossref","first-page":"1959","DOI":"10.1109\/JSYST.2020.2997713","volume":"15","author":"J Dai","year":"2020","unstructured":"Dai J, Huang K, Liu Y, Yang C, Wang Z (2020) Global reconstruction of complex network topology via structured compressive sensing. IEEE Syst J 15(2):1959\u20131969","journal-title":"IEEE Syst J"},{"issue":"7","key":"4121_CR7","doi-asserted-by":"crossref","first-page":"3602","DOI":"10.1109\/TCYB.2020.3028931","volume":"51","author":"D Hong","year":"2020","unstructured":"Hong D, Yokoya N, Chanussot J, Xu J, Zhu XX (2020) Joint and progressive subspace analysis (jpsa) with spatial\u2013spectral manifold alignment for semisupervised hyperspectral dimensionality reduction. IEEE Trans Cybern 51(7):3602\u20133615","journal-title":"IEEE Trans Cybern"},{"key":"4121_CR8","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.rse.2017.10.020","volume":"204","author":"X Xu","year":"2018","unstructured":"Xu X, Li J, Wu C, Plaza A (2018) Regional clustering-based spatial preprocessing for hyperspectral unmixing. Remote Sens Environ 204:333\u2013346","journal-title":"Remote Sens Environ"},{"issue":"17","key":"4121_CR9","doi-asserted-by":"crossref","first-page":"3433","DOI":"10.1080\/014311698214109","volume":"19","author":"MA COCHRANE","year":"1998","unstructured":"COCHRANE MA (1998) Linear mixture model classification of burned forests in the eastern amazon. Int J Remote Sens 19(17):3433\u20133440","journal-title":"Int J Remote Sens"},{"issue":"4","key":"4121_CR10","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.rse.2002.06.001","volume":"87","author":"D Lu","year":"2003","unstructured":"Lu D, Moran E, Batistella M (2003) Linear mixture model applied to amazonian vegetation classification. Remote Sens Environ 87(4):456\u2013469","journal-title":"Remote Sens Environ"},{"issue":"5","key":"4121_CR11","doi-asserted-by":"crossref","first-page":"2242","DOI":"10.1109\/TIP.2018.2795744","volume":"27","author":"Y Zhou","year":"2018","unstructured":"Zhou Y, Rangarajan A, Gader PD (2018) A gaussian mixture model representation of endmember variability in hyperspectral unmixing. IEEE Trans Image Process 27(5):2242\u20132256","journal-title":"IEEE Trans Image Process"},{"issue":"10","key":"4121_CR12","doi-asserted-by":"crossref","first-page":"7418","DOI":"10.1109\/TGRS.2020.2982490","volume":"58","author":"Y Qian","year":"2020","unstructured":"Qian Y, Xiong F, Qian Q, Zhou J (2020) Spectral mixture model inspired network architectures for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 58(10):7418\u20137434","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"4","key":"4121_CR13","doi-asserted-by":"crossref","first-page":"1575","DOI":"10.1109\/JSTARS.2016.2621003","volume":"10","author":"L Tong","year":"2016","unstructured":"Tong L, Zhou J, Li X, Qian Y, Gao Y (2016) Region-based structure preserving nonnegative matrix factorization for hyperspectral unmixing. IEEE J Sel Top Appl Earth Obs Remote Sens 10(4):1575\u20131588","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"3","key":"4121_CR14","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1109\/TGRS.2016.2616161","volume":"55","author":"Y Ma","year":"2016","unstructured":"Ma Y, Li C, Mei X, Liu C, Ma J (2016) Robust sparse hyperspectral unmixing with l2,1 norm. IEEE Trans Geosci Remote Sens 55(3):1227\u20131239","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"6","key":"4121_CR15","doi-asserted-by":"crossref","first-page":"816","DOI":"10.3390\/rs10060816","volume":"10","author":"Z Zhang","year":"2018","unstructured":"Zhang Z, Liao S, Zhang H, Wang S, Wang Y (2018) Bilateral filter regularized l2 sparse nonnegative matrix factorization for hyperspectral unmixing. Remote Sens 10(6):816","journal-title":"Remote Sens"},{"issue":"9","key":"4121_CR16","doi-asserted-by":"crossref","first-page":"2476","DOI":"10.1364\/AO.56.002476","volume":"56","author":"M Nie","year":"2017","unstructured":"Nie M, Liu Z, He X, Qiu Q, Zhang Y, Chang J (2017) End-member extraction based on segmented vertex component analysis in hyperspectral images. Appl Opt 56(9):2476\u20132482","journal-title":"Appl Opt"},{"key":"4121_CR17","doi-asserted-by":"crossref","unstructured":"Feng X-R, Li H-C, Wang R, Du Q, Jia X, Plaza AJ (2022) Hyperspectral unmixing based on nonnegative matrix factorization: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","DOI":"10.1109\/JSTARS.2022.3175257"},{"key":"4121_CR18","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.knosys.2018.04.010","volume":"152","author":"Y Zhu","year":"2018","unstructured":"Zhu Y, Hu X, Zhang Y, Li P (2018) Transfer learning with stacked reconstruction independent component analysis. Knowl-Based Syst 152:100\u2013106","journal-title":"Knowl-Based Syst"},{"key":"4121_CR19","doi-asserted-by":"crossref","unstructured":"Winter ME (1999) N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Imaging Spectrometry V, vol 3753, International Society for Optics and Photonics pp 266\u2013275","DOI":"10.1117\/12.366289"},{"issue":"3","key":"4121_CR20","doi-asserted-by":"crossref","first-page":"1776","DOI":"10.1109\/TGRS.2016.2633279","volume":"55","author":"Y Qian","year":"2016","unstructured":"Qian Y, Xiong F, Zeng S, Zhou J, Tang YY (2016) Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery. IEEE Trans Geosci Remote Sens 55(3):1776\u20131792","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"11","key":"4121_CR21","doi-asserted-by":"crossref","first-page":"4112","DOI":"10.1109\/TGRS.2011.2155070","volume":"49","author":"R Heylen","year":"2011","unstructured":"Heylen R, Burazerovic D, Scheunders P (2011) Fully constrained least squares spectral unmixing by simplex projection. IEEE Trans Geosci Remote Sens 49(11):4112\u20134122","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"4121_CR22","doi-asserted-by":"crossref","first-page":"1754","DOI":"10.1109\/JSTARS.2020.3048820","volume":"14","author":"P Zheng","year":"2021","unstructured":"Zheng P, Su H, Du Q (2021) Sparse and low-rank constrained tensor factorization for hyperspectral image unmixing. IEEE J Sel Top Appl Earth Obs Remote Sens 14:1754\u20131767","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"6","key":"4121_CR23","doi-asserted-by":"crossref","first-page":"2014","DOI":"10.1109\/TGRS.2010.2098413","volume":"49","author":"M-D Iordache","year":"2011","unstructured":"Iordache M-D, Bioucas-Dias JM, Plaza A (2011) Sparse unmixing of hyperspectral data. IEEE Trans Geosci Remote Sens 49(6):2014\u20132039","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"6","key":"4121_CR24","doi-asserted-by":"crossref","first-page":"3256","DOI":"10.1109\/TGRS.2013.2272076","volume":"52","author":"Z Shi","year":"2013","unstructured":"Shi Z, Tang W, Duren Z, Jiang Z (2013) Subspace matching pursuit for sparse unmixing of hyperspectral data. IEEE Trans Geosci Remote Sens 52(6):3256\u20133274","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"4121_CR25","unstructured":"Lee D, Seung HS (2000) Algorithms for non-negative matrix factorization. Advances in neural information processing systems 13"},{"issue":"1","key":"4121_CR26","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1109\/TGRS.2008.2002882","volume":"47","author":"S Jia","year":"2008","unstructured":"Jia S, Qian Y (2008) Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 47(1):161\u2013173","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"2","key":"4121_CR27","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1109\/TGRS.2010.2068053","volume":"49","author":"X Liu","year":"2010","unstructured":"Liu X, Xia W, Wang B, Zhang L (2010) An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans Geosci Remote Sens 49(2):757\u2013772","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"10","key":"4121_CR28","doi-asserted-by":"crossref","first-page":"6076","DOI":"10.1109\/TGRS.2016.2580702","volume":"54","author":"J Li","year":"2016","unstructured":"Li J, Bioucas-Dias JM, Plaza A, Liu L (2016) Robust collaborative nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 54(10):6076\u20136090","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"11","key":"4121_CR29","doi-asserted-by":"crossref","first-page":"6287","DOI":"10.1109\/TGRS.2017.2724944","volume":"55","author":"X Wang","year":"2017","unstructured":"Wang X, Zhong Y, Zhang L, Xu Y (2017) Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 55(11):6287\u20136304","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"5","key":"4121_CR30","doi-asserted-by":"crossref","first-page":"2815","DOI":"10.1109\/TGRS.2012.2213825","volume":"51","author":"X Lu","year":"2012","unstructured":"Lu X, Wu H, Yuan Y, Yan P, Li X (2012) Manifold regularized sparse nmf for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 51(5):2815\u20132826","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"5","key":"4121_CR31","doi-asserted-by":"crossref","first-page":"3007","DOI":"10.1109\/TGRS.2019.2946751","volume":"58","author":"X Lu","year":"2019","unstructured":"Lu X, Dong L, Yuan Y (2019) Subspace clustering constrained sparse nmf for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 58(5):3007\u20133019","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"4121_CR32","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.neucom.2015.06.049","volume":"171","author":"N Lu","year":"2016","unstructured":"Lu N, Miao H (2016) Structure constrained nonnegative matrix factorization for pattern clustering and classification. Neurocomputing 171:400\u2013411","journal-title":"Neurocomputing"},{"issue":"6","key":"4121_CR33","doi-asserted-by":"crossref","first-page":"2696","DOI":"10.1109\/JSTARS.2015.2417574","volume":"8","author":"S Yang","year":"2015","unstructured":"Yang S, Zhang X, Yao Y, Cheng S, Jiao L (2015) Geometric nonnegative matrix factorization (gnmf) for hyperspectral unmixing. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2696\u20132703","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"8","key":"4121_CR34","first-page":"1548","volume":"33","author":"D Cai","year":"2010","unstructured":"Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548\u20131560","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"4121_CR35","doi-asserted-by":"crossref","first-page":"11853","DOI":"10.1109\/JSTARS.2021.3126664","volume":"14","author":"E Ekanayake","year":"2021","unstructured":"Ekanayake E, Weerasooriya H, Ranasinghe D, Herath S, Rathnayake B, Godaliyadda G, Ekanayake M, Herath H (2021) Constrained nonnegative matrix factorization for blind hyperspectral unmixing incorporating endmember independence. IEEE J Sel Top Appl Earth Obs Remote Sens 14:11853\u201311869","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"12","key":"4121_CR36","doi-asserted-by":"crossref","first-page":"2348","DOI":"10.3390\/rs13122348","volume":"13","author":"J Zhang","year":"2021","unstructured":"Zhang J, Zhang X, Jiao L (2021) Sparse nonnegative matrix factorization for hyperspectral unmixing based on endmember independence and spatial weighted abundance. Remote Sens 13(12):2348","journal-title":"Remote Sens"},{"issue":"3","key":"4121_CR37","doi-asserted-by":"crossref","first-page":"3227","DOI":"10.1007\/s10489-021-02522-z","volume":"52","author":"S Li","year":"2022","unstructured":"Li S, Li W, Hu J, Li Y (2022) Semi-supervised bi-orthogonal constraints dual-graph regularized nmf for subspace clustering. Appl Intell 52(3):3227\u20133248","journal-title":"Appl Intell"},{"issue":"8","key":"4121_CR38","doi-asserted-by":"crossref","first-page":"3677","DOI":"10.1109\/JSTARS.2017.2684132","volume":"10","author":"YE Salehani","year":"2017","unstructured":"Salehani YE, Gazor S (2017) Smooth and sparse regularization for nmf hyperspectral unmixing. IEEE J Sel Top Appl Earth Obs Remote Sens 10(8):3677\u20133692","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"6755","key":"4121_CR39","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","volume":"401","author":"DD Lee","year":"1999","unstructured":"Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788\u2013791","journal-title":"Nature"},{"issue":"99","key":"4121_CR40","first-page":"1","volume":"PP","author":"DG Chachlakis","year":"2021","unstructured":"Chachlakis DG, Dhanaraj M, Prater-Bennette A, Markopoulos PP (2021) Dynamic l1-norm tucker tensor decomposition. IEEE J Sel Top Signal Process PP(99):1\u20131","journal-title":"IEEE J Sel Top Signal Process"},{"key":"4121_CR41","unstructured":"Xu G (2020) Dual calibration mechanism based l2, p-norm for graph matching. IEEE Transactions on Circuits and Systems for Video Technology PP(99)"},{"issue":"1","key":"4121_CR42","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TMM.2014.2375792","volume":"17","author":"C Shi","year":"2015","unstructured":"Shi C, Ruan Q, An G, Zhao R (2015) Hessian semi-supervised sparse feature selection based on l2,1\/2 -matrix norm. IEEE Trans Multimedia 17(1):16\u201328","journal-title":"IEEE Trans Multimedia"},{"key":"4121_CR43","doi-asserted-by":"crossref","unstructured":"Ammanouil R, Ferrari A, Richard C (2015) A graph laplacian regularization for hyperspectral data unmixing. In: 2015 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 1637\u20131641. IEEE","DOI":"10.1109\/ICASSP.2015.7178248"},{"issue":"2","key":"4121_CR44","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1109\/TGRS.2018.2862899","volume":"57","author":"Q Wang","year":"2018","unstructured":"Wang Q, He X, Li X (2018) Locality and structure regularized low rank representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(2):911\u2013923","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"4121_CR45","doi-asserted-by":"crossref","unstructured":"Dong W, Wozniak M, Wu J, Li W, Bai Z (2022) De-noising aggregation of graph neural networks by using principal component analysis. IEEE Transactions on Industrial Informatics","DOI":"10.1109\/TII.2022.3156658"},{"key":"4121_CR46","doi-asserted-by":"crossref","unstructured":"Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 977\u2013986","DOI":"10.1145\/2623330.2623726"},{"key":"4121_CR47","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.neucom.2019.11.070","volume":"382","author":"S Huang","year":"2020","unstructured":"Huang S, Xu Z, Kang Z, Ren Y (2020) Regularized nonnegative matrix factorization with adaptive local structure learning. Neurocomputing 382:196\u2013209","journal-title":"Neurocomputing"},{"key":"4121_CR48","doi-asserted-by":"crossref","first-page":"4257","DOI":"10.1109\/JSTARS.2020.3011257","volume":"13","author":"L Zhou","year":"2020","unstructured":"Zhou L, Zhang X, Wang J, Bai X, Tong L, Zhang L, Zhou J, Hancock E (2020) Subspace structure regularized nonnegative matrix factorization for hyperspectral unmixing. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4257\u20134270","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"7","key":"4121_CR49","doi-asserted-by":"crossref","first-page":"4820","DOI":"10.1109\/TII.2021.3129629","volume":"18","author":"M Wieczorek","year":"2021","unstructured":"Wieczorek M, Si\u0142ka J, Wo\u017aniak M, Garg S, Hassan MM (2021) Lightweight convolutional neural network model for human face detection in risk situations. IEEE Trans Ind Inform 18(7):4820\u20134829","journal-title":"IEEE Trans Ind Inform"},{"issue":"1","key":"4121_CR50","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-021-99269-x","volume":"12","author":"H Basak","year":"2022","unstructured":"Basak H, Kundu R, Singh PK, Ijaz MF, Wo\u017aniak M, Sarkar R (2022) A union of deep learning and swarm-based optimization for 3d human action recognition. Sci Rep 12(1):1\u201317","journal-title":"Sci Rep"},{"key":"4121_CR51","doi-asserted-by":"crossref","unstructured":"Yan G, Wo\u017aniak M (2022) Accurate key frame extraction algorithm of video action for aerobics online teaching. Mobile Networks and Applications, pp 1\u201310","DOI":"10.1007\/s11036-022-01939-1"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-04121-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-04121-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-04121-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,20]],"date-time":"2023-05-20T10:43:47Z","timestamp":1684579427000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-04121-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,29]]},"references-count":51,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["4121"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-04121-y","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,9,29]]},"assertion":[{"value":"26 August 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 September 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}}]}}