{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,31]],"date-time":"2025-03-31T19:25:30Z","timestamp":1743449130353,"version":"3.37.3"},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T00:00:00Z","timestamp":1663632000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T00:00:00Z","timestamp":1663632000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100015286","name":"key research and development program of Hebei Province","doi-asserted-by":"crossref","award":["20371801D"],"id":[{"id":"10.13039\/501100015286","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National key research and development program of China","award":["2019YFB1312500"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s10489-022-04118-7","type":"journal-article","created":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T09:04:03Z","timestamp":1663664643000},"page":"12063-12076","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["A semantic segmentation model for lumbar MRI images using divergence loss"],"prefix":"10.1007","volume":"53","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0692-7328","authenticated-orcid":false,"given":"Chao","family":"Hou","sequence":"first","affiliation":[]},{"given":"Weiqi","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hongbo","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Defeng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jingyuan","family":"Chang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,20]]},"reference":[{"issue":"9","key":"4118_CR1","first-page":"323","volume":"56","author":"F Cheng","year":"2010","unstructured":"Cheng F, You J, Rampersaud Y R (2010) Relationship between spinal magnetic resonance imaging findings and candidacy for spinal surgery. Can Fam Physician 56(9):323\u2013330","journal-title":"Can Fam Physician"},{"issue":"1","key":"4118_CR2","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1002\/jor.1100070116","volume":"7","author":"N Sch\u00f6nstr\u00f6m","year":"1989","unstructured":"Sch\u00f6nstr\u00f6m N, Lindahl S, Will\u00e9n J, et al. (1989) Dynamic changes in the dimensions of the lumbar spinal canal: an experimental study in vitro. J Orthop Res 7(1):115\u2013121","journal-title":"J Orthop Res"},{"issue":"13","key":"4118_CR3","doi-asserted-by":"publisher","first-page":"1423","DOI":"10.1097\/BRS.0b013e318060a5f5","volume":"32","author":"O Ogikubo","year":"2007","unstructured":"Ogikubo O, Forsberg L, Hansson T (2007) The relationship between the cross-sectional area of the cauda equina and the preoperative symptoms in central lumbar spinal stenosis. Spine 32(13):1423\u20131428","journal-title":"Spine"},{"issue":"1","key":"4118_CR4","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1038\/s41591-019-0715-9","volume":"26","author":"TC Hollon","year":"2020","unstructured":"Hollon T C, Pandian B, Adapa A R, et al. (2020) Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med 26(1):52\u201358","journal-title":"Nat Med"},{"issue":"8","key":"4118_CR5","first-page":"1342","volume":"46","author":"U Nestle","year":"2005","unstructured":"Nestle U, Kremp S, Schaefer-Schuler A, et al. (2005) Comparison of different methods for delineation of 18f-FDG PET\u2013positive tissue for target volume definition in radiotherapy of patients with non\u2013small cell lung cancer. J Nuclear Med 46(8):1342\u20131348","journal-title":"J Nuclear Med"},{"issue":"9","key":"4118_CR6","doi-asserted-by":"publisher","first-page":"1342","DOI":"10.1038\/s41591-018-0107-6","volume":"24","author":"J De Fauw","year":"2018","unstructured":"De Fauw J, Ledsam J R, Romera-Paredes B, et al. (2018) Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 24(9):1342\u20131350","journal-title":"Nat Med"},{"issue":"11","key":"4118_CR7","doi-asserted-by":"publisher","first-page":"2514","DOI":"10.1109\/TMI.2018.2837502","volume":"37","author":"O Bernard","year":"2018","unstructured":"Bernard O, Lalande A, Zotti C, et al. (2018) Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging 37 (11):2514\u20132525","journal-title":"IEEE Trans Med Imaging"},{"issue":"21","key":"4118_CR8","doi-asserted-by":"publisher","first-page":"1919","DOI":"10.1097\/BRS.0b013e3181d359bd","volume":"35","author":"C Schizas","year":"2010","unstructured":"Schizas C, Theumann N, Burn A, et al. (2010) Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 35(21):1919\u20131924","journal-title":"Spine"},{"issue":"23","key":"4118_CR9","doi-asserted-by":"publisher","first-page":"2601","DOI":"10.1097\/00007632-200112010-00015","volume":"26","author":"B Danielson","year":"2001","unstructured":"Danielson B, Will\u00e9n J (2001) Axially loaded magnetic resonance image of the lumbar spine in asymptomatic individuals. Spine 26(23):2601\u20132606","journal-title":"Spine"},{"issue":"13","key":"4118_CR10","doi-asserted-by":"publisher","first-page":"1423","DOI":"10.1097\/BRS.0b013e318060a5f5","volume":"32","author":"O Ogikubo","year":"2007","unstructured":"Ogikubo O, Forsberg L, Hansson T (2007) The relationship between the cross-sectional area of the cauda equina and the preoperative symptoms in central lumbar spinal stenosis. Spine 32(13):1423\u20131428","journal-title":"Spine"},{"issue":"1","key":"4118_CR11","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1002\/jor.1100070116","volume":"7","author":"N Sch\u00f6nstr\u00f6m","year":"1989","unstructured":"Sch\u00f6nstr\u00f6m N, Lindahl S, Will\u00e9n J, et al. (1989) Dynamic changes in the dimensions of the lumbar spinal canal: an experimental study in vitro. J Orthop Res 7(1):115\u2013121","journal-title":"J Orthop Res"},{"issue":"12","key":"4118_CR12","doi-asserted-by":"publisher","first-page":"4116","DOI":"10.1007\/s00586-016-4405-8","volume":"25","author":"R Tang","year":"2016","unstructured":"Tang R, Gungor C, Sesek R F, et al. (2016) Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings. Eur Spine J 25(12):4116\u20134131","journal-title":"Eur Spine J"},{"key":"4118_CR13","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer International Publishing, pp 234\u2013241","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"1","key":"4118_CR14","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1038\/s41592-018-0261-2","volume":"16","author":"T Falk","year":"2019","unstructured":"Falk T, Mai D, Bensch R, et al. (2019) U-net: deep learning for cell counting, detection, and morphometry. Nat Methods 16(1):67\u201370","journal-title":"Nat Methods"},{"key":"4118_CR15","unstructured":"Zhang Z, Sabuncu MR (2018) Generalized cross entropy loss for training deep neural networks with noisy labels. In: Proceedings of the 32nd conference on neural information processing systems (NeurIPS)"},{"key":"4118_CR16","doi-asserted-by":"crossref","unstructured":"J\u00e9gou S, Drozdzal M, Vazquez D et al (2017) The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of CVPRW, pp 1175\u20131183","DOI":"10.1109\/CVPRW.2017.156"},{"issue":"1","key":"4118_CR17","first-page":"100","volume":"28","author":"JA Hartigan","year":"1979","unstructured":"Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-Means Clustering Algorithm. J R Stat Soc, Series C. 28(1):100\u2013108","journal-title":"J R Stat Soc Ser C"},{"issue":"12","key":"4118_CR18","doi-asserted-by":"publisher","first-page":"1673","DOI":"10.1109\/83.730379","volume":"7","author":"CW Chen","year":"1998","unstructured":"Chen C W, Luo J, Parker K J (1998) Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans Image Process 7(12):1673\u20131683","journal-title":"IEEE Trans Image Process"},{"key":"4118_CR19","doi-asserted-by":"crossref","unstructured":"Carreira J, Sminchisescu C (2010) Constrained parametric min-cuts for automatic object segmentation. In: Proceedings of IEEE Computer Society conference on computer vision and pattern recognition (CVPR), pp 3241\u20133248","DOI":"10.1109\/CVPR.2010.5540063"},{"issue":"4","key":"4118_CR20","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/BF00133570","volume":"1","author":"M Kass","year":"1988","unstructured":"Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321\u2013331","journal-title":"Int J Comput Vis"},{"issue":"1","key":"4118_CR21","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1109\/42.668699","volume":"17","author":"MS Atkins","year":"1998","unstructured":"Atkins M S, Mackiewich B T (1998) Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imaging 17(1):98\u2013107","journal-title":"IEEE Trans Med Imaging"},{"key":"4118_CR22","doi-asserted-by":"crossref","unstructured":"Chan T, Vese L (1999) An active contour model without edges. In: Proceedings of the international conference on scale-space theories in computer vision, pp 141\u2013151","DOI":"10.1007\/3-540-48236-9_13"},{"key":"4118_CR23","doi-asserted-by":"crossref","unstructured":"Zhang Y, Brady J M, Smith S (2000) Hidden Markov random field model for segmentation of brain MR image. In: Proceedings of medical imaging 2000: image processing, vol 3979, pp 1126\u20131137","DOI":"10.1117\/12.387617"},{"issue":"10","key":"4118_CR24","first-page":"1744","volume":"32","author":"Z Tu","year":"2009","unstructured":"Tu Z, Bai X (2009) Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32(10):1744\u20131757","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"4118_CR25","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"issue":"12","key":"4118_CR26","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481\u20132495","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"4118_CR27","doi-asserted-by":"crossref","unstructured":"Drozdzal M, Vorontsov E, Chartrand G et al (2016) The importance of skip connections in biomedical image segmentation. In: Proceedings of deep learning and data labeling for medical applications, vol 10008, pp 179\u2013187","DOI":"10.1007\/978-3-319-46976-8_19"},{"key":"4118_CR28","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Van Der Maaten L et al (2017) Densely connected convolutional networks. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 4700\u20134708","DOI":"10.1109\/CVPR.2017.243"},{"key":"4118_CR29","doi-asserted-by":"crossref","unstructured":"Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3431\u20133440","DOI":"10.1109\/CVPR.2015.7298965"},{"issue":"4","key":"4118_CR30","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2017","unstructured":"Chen L C, Papandreou G, Kokkinos I, et al. (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834\u2013848","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"4118_CR31","unstructured":"Chen L C, Papandreou G, Schroff F, et al. (2017) Rethinking atrous convolution for semantic image segmentation. In: Conference on computer vision and pattern recognition (CVPR), IEEE\/CVF"},{"key":"4118_CR32","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.neucom.2021.02.091","volume":"443","author":"Y Huang","year":"2021","unstructured":"Huang Y, Wang Q, Jia W, et al. (2021) See more than once: Kernel-sharing atrous convolution for semantic segmentation. Neurocomputing 443:26\u201334","journal-title":"Neurocomputing"},{"key":"4118_CR33","doi-asserted-by":"crossref","unstructured":"Strudel R, Garcia R, Laptev I, et al. (2021) Segmenter: transformer for semantic segmentation. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 7262\u20137272","DOI":"10.1109\/ICCV48922.2021.00717"},{"key":"4118_CR34","doi-asserted-by":"crossref","unstructured":"Chen X, Williams B M, Vallabhaneni S R, et al. (2019) Learning active contour models for medical image segmentation. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 11632\u201311640","DOI":"10.1109\/CVPR.2019.01190"},{"issue":"7","key":"4118_CR35","doi-asserted-by":"publisher","first-page":"639","DOI":"10.1016\/j.compmedimag.2014.03.005","volume":"38","author":"S Ghosh","year":"2014","unstructured":"Ghosh S, Chaudhary V (2014) Supervised methods for detection and segmentation of tissues in clinical lumbar MRI. Comput Med Imaging Graph 38(7):639\u2013649","journal-title":"Comput Med Imaging Graph"},{"key":"4118_CR36","doi-asserted-by":"crossref","unstructured":"Koh J, Scott P D, Chaudhary V et al (2011) An automatic segmentation method of the spinal canal from clinical MR images based on an attention model and an active contour model. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro, pp 1467\u20131471","DOI":"10.1109\/ISBI.2011.5872677"},{"issue":"18","key":"4118_CR37","doi-asserted-by":"publisher","first-page":"11589","DOI":"10.1007\/s00521-021-05856-4","volume":"33","author":"HX Li","year":"2021","unstructured":"Li HX, Luo HB, Huan W et al (2021) Automatic lumbar spinal MRI image segmentation with a multi-scale attention network. Neural Comput Appl 33(18):11589\u201311602","journal-title":"Neural Comput Appl"},{"key":"4118_CR38","doi-asserted-by":"publisher","first-page":"43487","DOI":"10.1109\/ACCESS.2019.2908002","volume":"7","author":"AS Al-Kafri","year":"2019","unstructured":"Al-Kafri A S, Sudirman S, Hussain A, et al. (2019) Boundary delineation of MRI images for lumbar spinal stenosis detection through semantic segmentation using deep neural networks. IEEE Access 7:43487\u201343501","journal-title":"IEEE Access"},{"key":"4118_CR39","doi-asserted-by":"crossref","unstructured":"Natalia F, Meidia H, Afriliana N et al (2018) Development of ground truth data for automatic lumbar spine MRI image segmentation. In: Proceedings of HPCC\/SMARTCITY\/DSS, pp 1449\u20131454","DOI":"10.1109\/HPCC\/SmartCity\/DSS.2018.00239"},{"key":"4118_CR40","doi-asserted-by":"publisher","unstructured":"Sudirman S, Al Kafri A, et al. (2019) Label image ground truth data for lumbar spine MRI dataset. Mendeley Data V2. https:\/\/doi.org\/10.17632\/zbf6b4pttk.2","DOI":"10.17632\/zbf6b4pttk.2"},{"key":"4118_CR41","unstructured":"Dumoulin V, Visin F (2018) A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016. [Online]. Available: https:\/\/arxiv.org\/abs\/1603.07285"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-04118-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-04118-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-04118-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,20]],"date-time":"2023-05-20T10:33:27Z","timestamp":1684578807000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-04118-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,20]]},"references-count":41,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["4118"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-04118-7","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"type":"print","value":"0924-669X"},{"type":"electronic","value":"1573-7497"}],"subject":[],"published":{"date-parts":[[2022,9,20]]},"assertion":[{"value":"24 August 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 September 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}