{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,10,16]],"date-time":"2023-10-16T11:49:20Z","timestamp":1697456960410},"reference-count":26,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T00:00:00Z","timestamp":1657670400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T00:00:00Z","timestamp":1657670400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62076059"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1007\/s10489-022-03891-9","type":"journal-article","created":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T05:04:53Z","timestamp":1657688693000},"page":"6978-6991","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A unified framework of graph structure learning, graph generation and classification for brain network analysis"],"prefix":"10.1007","volume":"53","author":[{"given":"Peng","family":"Cao","sequence":"first","affiliation":[]},{"given":"Guangqi","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Wenju","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,13]]},"reference":[{"key":"3891_CR1","doi-asserted-by":"crossref","unstructured":"Kumar V, Garg R (2021) Resting state functional connectivity alterations in individuals with autism spectrum disorders: a systematic review. Front Psychiatry, pp 1\u201355","DOI":"10.1101\/2021.07.27.21261165"},{"key":"3891_CR2","doi-asserted-by":"crossref","unstructured":"Wang M, Huang J, Liu M, Zhang D (2019) Functional connectivity network analysis with discriminative hub detection for brain disease identification. In: Proceedings of the AAAI conference on artificial intelligence, vol 33. pp 1198\u20131205","DOI":"10.1609\/aaai.v33i01.33011198"},{"key":"3891_CR3","unstructured":"Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. ICLR, pp 1\u201311"},{"key":"3891_CR4","doi-asserted-by":"publisher","first-page":"431","DOI":"10.1016\/j.neuroimage.2017.12.052","volume":"169","author":"SI Ktena","year":"2018","unstructured":"Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D (2018) Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169:431\u2013442","journal-title":"NeuroImage"},{"key":"3891_CR5","doi-asserted-by":"crossref","unstructured":"Li X, Dvornek NC, Zhuang J, Ventola P, Duncan JS (2018) Brain biomarker interpretation in asd using deep learning and fmri. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 206\u2013214","DOI":"10.1007\/978-3-030-00931-1_24"},{"key":"3891_CR6","doi-asserted-by":"crossref","unstructured":"Parisot S, Ktena SI, Ferrante E, Lee M, Moreno RG, Glocker B, Rueckert D (2017) Spectral graph convolutions for population-based disease prediction. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 177\u2013185","DOI":"10.1007\/978-3-319-66179-7_21"},{"key":"3891_CR7","doi-asserted-by":"publisher","first-page":"102233","DOI":"10.1016\/j.media.2021.102233","volume":"74","author":"X Li","year":"2021","unstructured":"Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, Duncan JS (2021) Braingnn: interpretable brain graph neural network for fmri analysis. Med Image Anal 74:102233","journal-title":"Med Image Anal"},{"key":"3891_CR8","doi-asserted-by":"publisher","first-page":"104096","DOI":"10.1016\/j.compbiomed.2020.104096","volume":"127","author":"H Jiang","year":"2020","unstructured":"Jiang H, Cao P, Xu M, Yang J, Zaiane O (2020) Hi-gcn: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput Biol Med 127:104096","journal-title":"Comput Biol Med"},{"key":"3891_CR9","doi-asserted-by":"crossref","unstructured":"Wen G, Cao P, Bao H, Yang W, Zheng T, Zaiane O (2022) Mvs-gcn: a prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput Biol Med, p 105239","DOI":"10.1016\/j.compbiomed.2022.105239"},{"key":"3891_CR10","doi-asserted-by":"publisher","first-page":"102279","DOI":"10.1016\/j.media.2021.102279","volume":"75","author":"N Wang","year":"2022","unstructured":"Wang N, Yao D, Ma L, Liu M (2022) Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fmri. Med Image Anal 75:102279","journal-title":"Med Image Anal"},{"key":"3891_CR11","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1016\/j.cmpb.2019.06.006","volume":"177","author":"GS Bajestani","year":"2019","unstructured":"Bajestani GS, Behrooz M, Khani AG, Nouri-Baygi M, Mollaei A (2019) Diagnosis of autism spectrum disorder based on complex network features. Comput Methods Prog Biomed 177:277\u2013283","journal-title":"Comput Methods Prog Biomed"},{"key":"3891_CR12","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.nicl.2017.08.017","volume":"17","author":"AS Heinsfeld","year":"2018","unstructured":"Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical 17:16\u201323","journal-title":"NeuroImage: Clinical"},{"key":"3891_CR13","first-page":"1","volume":"27","author":"I Goodfellow","year":"2014","unstructured":"Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27:1\u20139","journal-title":"Adv Neural Inf Process Syst"},{"key":"3891_CR14","first-page":"1","volume":"30","author":"I Gulrajani","year":"2017","unstructured":"Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017) Improved training of wasserstein gans. Adv Neural Inf Process Syst 30:1\u201311","journal-title":"Adv Neural Inf Process Syst"},{"key":"3891_CR15","unstructured":"Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR, pp 214\u2013223"},{"key":"3891_CR16","unstructured":"Dauphin YN, Fan A, Auli M, Grangier D (2017) Language modeling with gated convolutional networks. In: International conference on machine learning. PMLR, pp 933\u2013941"},{"key":"3891_CR17","doi-asserted-by":"publisher","first-page":"659","DOI":"10.1038\/mp.2013.78","volume":"19","author":"A Di Martino","year":"2014","unstructured":"Di Martino A, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer SY, Dapretto M et al (2014) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19:659\u2013667","journal-title":"Mol Psychiatry"},{"key":"3891_CR18","doi-asserted-by":"crossref","unstructured":"Ma Y, Wang S, Aggarwal CC, Tang J (2019) Graph convolutional networks with eigenpooling. In: Proceedings of the 25th ACM SIGKDD International conference on knowledge discovery & data mining, pp 723\u2013731","DOI":"10.1145\/3292500.3330982"},{"key":"3891_CR19","doi-asserted-by":"publisher","first-page":"70","DOI":"10.3389\/fninf.2019.00070","volume":"13","author":"T Eslami","year":"2019","unstructured":"Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F (2019) Asd-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fmri data. Front Neuroinform 13:70","journal-title":"Front Neuroinform"},{"key":"3891_CR20","doi-asserted-by":"crossref","unstructured":"Cao B, He L, Wei X, Xing M, Yu PS, Klumpp H, Leow AD (2017) T-bne: tensor-based brain network embedding. In: Proceedings of the 2017 SIAM International conference on data mining. SIAM, pp 189\u2013197","DOI":"10.1137\/1.9781611974973.22"},{"key":"3891_CR21","doi-asserted-by":"publisher","first-page":"101596","DOI":"10.1016\/j.media.2019.101596","volume":"60","author":"I Mhiri","year":"2020","unstructured":"Mhiri I, Rekik I (2020) Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism. Med Image Anal 60:101596","journal-title":"Med Image Anal"},{"issue":"7","key":"3891_CR22","doi-asserted-by":"publisher","first-page":"1711","DOI":"10.1109\/TMI.2018.2798500","volume":"37","author":"D Zhang","year":"2018","unstructured":"Zhang D, Huang J, Jie B, Du J, Tu L, Liu M (2018) Ordinal pattern: A new descriptor for brain connectivity networks. IEEE Trans Med Imaging 37(7):1711\u20131722","journal-title":"IEEE Trans Med Imaging"},{"key":"3891_CR23","doi-asserted-by":"publisher","first-page":"1038","DOI":"10.1016\/j.neuroimage.2016.09.046","volume":"146","author":"J Kawahara","year":"2017","unstructured":"Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG, Hamarneh G (2017) Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146:1038\u20131049","journal-title":"NeuroImage"},{"key":"3891_CR24","unstructured":"Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S (2017) Variational approaches for auto-encoding generative adversarial networks, pp 1\u201321"},{"key":"3891_CR25","unstructured":"Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. Int Conf Learn Representations. pp 1\u20136"},{"key":"3891_CR26","doi-asserted-by":"crossref","unstructured":"Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for graph embedding. Int Jt Conf Artif Intell, pp 2609\u20132615","DOI":"10.24963\/ijcai.2018\/362"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03891-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03891-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03891-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,27]],"date-time":"2023-02-27T04:37:50Z","timestamp":1677472670000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03891-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,13]]},"references-count":26,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["3891"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03891-9","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,13]]},"assertion":[{"value":"11 June 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 July 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflicts of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}}]}}