{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:24:12Z","timestamp":1740122652955,"version":"3.37.3"},"reference-count":55,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2022,9,8]],"date-time":"2022-09-08T00:00:00Z","timestamp":1662595200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,9,8]],"date-time":"2022-09-08T00:00:00Z","timestamp":1662595200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Scientific Research Fund of the Sichuan Provincial Science and Technology Department","award":["22YYJC2489","2021YFG0133","2021YFG0295","21ZDYF3598 and 2021YFH0069"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11901063"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Innovation and Technology Fund of Hong Kong","award":["MRP\/015\/18"]},{"DOI":"10.13039\/501100012166","name":"National Key R&D Program of China","doi-asserted-by":"crossref","award":["2021ZD0112701"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s10489-022-03884-8","type":"journal-article","created":{"date-parts":[[2022,9,8]],"date-time":"2022-09-08T11:03:07Z","timestamp":1662634987000},"page":"11599-11617","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Robust semi-supervised data representation and imputation by correntropy based constraint nonnegative matrix factorization"],"prefix":"10.1007","volume":"53","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0434-6231","authenticated-orcid":false,"given":"Nan","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Yuanhua","family":"Du","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xiuyu","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Kup-Sze","family":"Choi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,8]]},"reference":[{"issue":"1","key":"3884_CR1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1497577.1497578","volume":"3","author":"H-P Kriegel","year":"2009","unstructured":"Kriegel H-P, Kr\u00f6ger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data (tkdd) 3(1):1\u201358","journal-title":"ACM Trans Knowl Discov Data (tkdd)"},{"issue":"5500","key":"3884_CR2","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","volume":"290","author":"ST Roweis","year":"2000","unstructured":"Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323\u20132326","journal-title":"Science"},{"key":"3884_CR3","doi-asserted-by":"crossref","unstructured":"Ding C, He X (2004) K-means clustering and principal component analysis. In: International conf. machine learning","DOI":"10.1145\/1015330.1015408"},{"key":"3884_CR4","doi-asserted-by":"crossref","unstructured":"Wang C, Zhang J, Wu T, Zhang M, Shi G (2022) Semi-supervised nonnegative matrix factorization with positive and negative label propagations. Appl Intell:1\u201312","DOI":"10.1007\/s10489-021-02940-z"},{"issue":"8","key":"3884_CR5","first-page":"1548","volume":"33","author":"D Cai","year":"2010","unstructured":"Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548\u20131560","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3884_CR6","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.engappai.2017.11.008","volume":"69","author":"Y Meng","year":"2018","unstructured":"Meng Y, Shang R, Jiao L, Zhang W, Yang S (2018) Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints. Eng Appl Artif Intell 69:24\u201335","journal-title":"Eng Appl Artif Intell"},{"key":"3884_CR7","doi-asserted-by":"crossref","first-page":"107683","DOI":"10.1016\/j.patcog.2020.107683","volume":"111","author":"S Peng","year":"2021","unstructured":"Peng S, Ser W, Chen B, Lin Z (2021) Robust semi-supervised nonnegative matrix factorization for image clustering. Pattern Recognition 111:107683","journal-title":"Pattern Recognition"},{"key":"3884_CR8","doi-asserted-by":"crossref","unstructured":"Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 333\u2013342","DOI":"10.1145\/1835804.1835848"},{"key":"3884_CR9","unstructured":"Gu Q, Li Z, Han J (2011) Joint feature selection and subspace learning"},{"issue":"1","key":"3884_CR10","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.patcog.2014.08.004","volume":"48","author":"S Wang","year":"2015","unstructured":"Wang S, Pedrycz W, Zhu Q, Zhu W (2015) Subspace learning for unsupervised feature selection via matrix factorization. Pattern Recogn 48(1):10\u201319","journal-title":"Pattern Recogn"},{"key":"3884_CR11","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.patcog.2015.12.008","volume":"53","author":"N Zhou","year":"2016","unstructured":"Zhou N, Xu Y, Cheng H, Fang J, Pedrycz W (2016) Global and local structure preserving sparse subspace learning: an iterative approach to unsupervised feature selection. Pattern Recogn 53:87\u2013101","journal-title":"Pattern Recogn"},{"key":"3884_CR12","doi-asserted-by":"crossref","first-page":"113064","DOI":"10.1016\/j.dss.2019.05.004","volume":"122","author":"Y Zhang","year":"2019","unstructured":"Zhang Y, Zhang Q, Chen Z, Shang J, Wei H (2019) Feature assessment and ranking for classification with nonlinear sparse representation and approximate dependence analysis. Decis Support Syst 122:113064","journal-title":"Decis Support Syst"},{"key":"3884_CR13","doi-asserted-by":"crossref","unstructured":"Little RJ, Rubin DB (2019) Statistical analysis with missing data. Wiley, Vol 793","DOI":"10.1002\/9781119482260"},{"issue":"2","key":"3884_CR14","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s00521-009-0295-6","volume":"19","author":"PJ Garc\u00eda-Laencina","year":"2010","unstructured":"Garc\u00eda-Laencina PJ, Sancho-G\u00f3mez J-L , Figueiras-Vidal AR (2010) Pattern classification with missing data: a review. Neural Comput Applic 19(2):263\u2013282","journal-title":"Neural Comput Applic"},{"issue":"5","key":"3884_CR15","doi-asserted-by":"crossref","first-page":"1844","DOI":"10.1109\/TCYB.2019.2894283","volume":"50","author":"X Luo","year":"2019","unstructured":"Luo X, Zhou M, Li S, Hu L, Shang M (2019) Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications. IEEE Trans Cybernetics 50 (5):1844\u20131855","journal-title":"IEEE Trans Cybernetics"},{"key":"3884_CR16","doi-asserted-by":"crossref","unstructured":"Schafer JL (1997) Analysis of incomplete multivariate data. CRC Press","DOI":"10.1201\/9781439821862"},{"issue":"5","key":"3884_CR17","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1175\/1520-0442(2001)014<0853:AOICDE>2.0.CO;2","volume":"14","author":"T Schneider","year":"2001","unstructured":"Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Climate 14(5):853\u2013871","journal-title":"J Climate"},{"issue":"3","key":"3884_CR18","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1207\/S15328007SEM0703_1","volume":"7","author":"MS Gold","year":"2000","unstructured":"Gold MS, Bentler PM (2000) Treatments of missing data: a Monte Carlo comparison of rbhdi, iterative stochastic regression imputation, and expectation-maximization. Struct Equ Modeling 7(3):319\u2013355","journal-title":"Struct Equ Modeling"},{"issue":"6","key":"3884_CR19","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1093\/bioinformatics\/17.6.520","volume":"17","author":"O Troyanskaya","year":"2001","unstructured":"Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for dna microarrays. Bioinformatics 17(6):520\u2013525","journal-title":"Bioinformatics"},{"issue":"8","key":"3884_CR20","first-page":"4705","volume":"7","author":"IB Aydilek","year":"2012","unstructured":"Aydilek IB, Arslan A (2012) A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks, International Journal of Innovative Computing. Inf Control 7(8):4705\u20134717","journal-title":"Inf Control"},{"issue":"1","key":"3884_CR21","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.neunet.2010.09.008","volume":"24","author":"E-L Silva-Ram\u00edrez","year":"2011","unstructured":"Silva-Ram\u00edrez E-L, Pino-Mej\u00edas R, L\u00f3pez-Coello M, Cubiles-de-la Vega M-D (2011) Missing value imputation on missing completely at random data using multilayer perceptrons. Neural Netw 24 (1):121\u2013129","journal-title":"Neural Netw"},{"issue":"4","key":"3884_CR22","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1007\/s005210200002","volume":"10","author":"F Fessant","year":"2002","unstructured":"Fessant F, Midenet S (2002) Self-organising map for data imputation and correction in surveys. Neural Comput Appl 10(4):300\u2013310","journal-title":"Neural Comput Appl"},{"key":"3884_CR23","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.knosys.2013.08.023","volume":"53","author":"MG Rahman","year":"2013","unstructured":"Rahman MG, Islam MZ (2013) Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques. Knowl-Based Syst 53:51\u201365","journal-title":"Knowl-Based Syst"},{"issue":"2","key":"3884_CR24","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1109\/JBHI.2016.2634587","volume":"22","author":"G Wang","year":"2018","unstructured":"Wang G, Deng Z, Choi K-S (2018) Tackling missing data in community health studies using additive ls-svm classifier. IEEE J Biomed Health Inform 22(2):579\u2013587","journal-title":"IEEE J Biomed Health Inform"},{"issue":"48","key":"3884_CR25","first-page":"251","volume":"87","author":"GE Batista","year":"2002","unstructured":"Batista GE, Monard MC, et al. (2002) A study of k-nearest neighbour as an imputation method. His 87(48):251\u2013 260","journal-title":"His"},{"issue":"6","key":"3884_CR26","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s10208-009-9045-5","volume":"9","author":"EJ Cand\u00e8s","year":"2009","unstructured":"Cand\u00e8s EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717","journal-title":"Found Comput Math"},{"issue":"2","key":"3884_CR27","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1007\/s11464-012-0194-5","volume":"7","author":"Y Xu","year":"2012","unstructured":"Xu Y, Yin W, Wen Z, Zhang Y (2012) An alternating direction algorithm for matrix completion with nonnegative factors. Front Math China 7(2):365\u2013384","journal-title":"Front Math China"},{"issue":"10","key":"3884_CR28","doi-asserted-by":"crossref","first-page":"1723","DOI":"10.1109\/LSP.2015.2428713","volume":"22","author":"B Chen","year":"2015","unstructured":"Chen B, Wang J, Zhao H, Zheng N, Pr\u00edncipe JC (2015) Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process Lett 22(10):1723\u20131727","journal-title":"IEEE Signal Process Lett"},{"issue":"13","key":"3884_CR29","doi-asserted-by":"crossref","first-page":"3376","DOI":"10.1109\/TSP.2016.2539127","volume":"64","author":"B Chen","year":"2016","unstructured":"Chen B, Xing L, Zhao H, Zheng N, Pr\u00edncipe JC (2016) Generalized correntropy for robust adaptive filtering. Trans Signal Process 64(13):3376\u20133387","journal-title":"Trans Signal Process"},{"key":"3884_CR30","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/TSP.2019.2952057","volume":"68","author":"Y He","year":"2019","unstructured":"He Y, Wang F, Li Y, Qin J, Chen B (2019) Robust matrix completion via maximum correntropy criterion and half-quadratic optimization. IEEE Trans Signal Process 68:181\u2013195","journal-title":"IEEE Trans Signal Process"},{"issue":"6755","key":"3884_CR31","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","volume":"401","author":"DD Lee","year":"1999","unstructured":"Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788","journal-title":"Nature"},{"issue":"12","key":"3884_CR32","doi-asserted-by":"crossref","first-page":"1495","DOI":"10.1093\/bioinformatics\/btm134","volume":"23","author":"H Kim","year":"2007","unstructured":"Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12):1495\u20131502","journal-title":"Bioinformatics"},{"issue":"1","key":"3884_CR33","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1186\/1471-2105-7-78","volume":"7","author":"P Carmona-Saez","year":"2006","unstructured":"Carmona-Saez P, Pascual-Marqui RD, Tirado F, Carazo JM, Pascual-Montano A (2006) Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7(1):78","journal-title":"BMC Bioinformatics"},{"key":"3884_CR34","doi-asserted-by":"crossref","unstructured":"Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval, pp 267\u2013273","DOI":"10.1145\/860435.860485"},{"issue":"7","key":"3884_CR35","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TPAMI.2011.217","volume":"34","author":"H Liu","year":"2011","unstructured":"Liu H, Wu Z, Li X, Cai D, Huang TS (2011) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299\u20131311","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"3","key":"3884_CR36","doi-asserted-by":"crossref","first-page":"1758","DOI":"10.1137\/120887795","volume":"6","author":"Y Xu","year":"2013","unstructured":"Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J Imaging Sci 6(3):1758\u20131789","journal-title":"SIAM J Imaging Sci"},{"key":"3884_CR37","unstructured":"Rockafellar RT (2015) Convex analysis Princeton University Press"},{"key":"3884_CR38","doi-asserted-by":"crossref","unstructured":"Cai D, He X, Wu X, Han J (2008) Non-negative matrix factorization on manifold. In: Eighth IEEE international conference on data mining, pp 63\u201372","DOI":"10.1109\/ICDM.2008.57"},{"issue":"8","key":"3884_CR39","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","volume":"33","author":"D Cai","year":"2011","unstructured":"Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548\u20131560","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"7","key":"3884_CR40","doi-asserted-by":"crossref","first-page":"1214","DOI":"10.1109\/TCYB.2013.2287103","volume":"44","author":"H Liu","year":"2014","unstructured":"Liu H, Yang G, Wu Z, Cai D (2014) Constrained concept factorization for image representation. IEEE Trans Cybern 44(7):1214","journal-title":"IEEE Trans Cybern"},{"key":"3884_CR41","doi-asserted-by":"crossref","unstructured":"Guo Y, Ding G, Zhou J, Liu Q (2015) Robust and discriminative concept factorization for image representation:115\u2013122","DOI":"10.1145\/2671188.2749317"},{"issue":"7","key":"3884_CR42","doi-asserted-by":"crossref","first-page":"1717","DOI":"10.1109\/TPAMI.2012.274","volume":"35","author":"Z Zhang","year":"2012","unstructured":"Zhang Z, Zhao K (2012) Low-rank matrix approximation with manifold regularization. IEEE Trans Pattern Anal Mach Intell 35(7):1717\u20131729","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"6","key":"3884_CR43","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1109\/TKDE.2010.165","volume":"23","author":"D Cai","year":"2011","unstructured":"Cai D, He X, Han J (2011) Locally consistent concept factorization for document clustering. IEEE Trans Knowl Data Eng 23(6):902\u2013913","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"6","key":"3884_CR44","doi-asserted-by":"crossref","first-page":"1485","DOI":"10.1109\/TIP.2010.2103949","volume":"20","author":"R He","year":"2011","unstructured":"He R, Hu B-G, Zheng W-S, Kong X-W (2011) Robust principal component analysis based on maximum correntropy criterion. Trans Image Process 20(6):1485\u20131494","journal-title":"Trans Image Process"},{"issue":"3","key":"3884_CR45","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/0022-3956(75)90026-6","volume":"12","author":"MF Folstein","year":"1975","unstructured":"Folstein MF, Folstein SE, McHugh PR (1975) \u201cmini-mental state\u201d: a practical method for grading the cognitive state of patients for the clinician. J Psychiatry Res 12(3):189\u2013198","journal-title":"J Psychiatry Res"},{"key":"3884_CR46","unstructured":"Cleeland C, Ryan K (1994) Pain assessment: global use of the brief pain inventory. Ann Acad Med Singapore"},{"issue":"4","key":"3884_CR47","first-page":"709","volume":"24","author":"JA Yesavage","year":"1988","unstructured":"Yesavage JA (1988) Geriatric depression scale. Psychopharmacol Bull 24(4):709\u2013711","journal-title":"Psychopharmacol Bull"},{"issue":"11","key":"3884_CR48","doi-asserted-by":"crossref","first-page":"744","DOI":"10.1016\/S0031-9406(10)60612-8","volume":"80","author":"R Smith","year":"1994","unstructured":"Smith R (1994) Validation and reliability of the elderly mobility scale. Physiotherapy 80 (11):744\u2013747","journal-title":"Physiotherapy"},{"key":"3884_CR49","doi-asserted-by":"crossref","unstructured":"Guigoz Y, Vellas B, Garry P (1997) Mini nutritional assessment: a practical assessment tool for grading the nutritional state of elderly patients. Facts Res Intervention Geriatr:15\u201360","DOI":"10.1016\/S0899-9007(98)00171-3"},{"issue":"5","key":"3884_CR50","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1111\/j.1365-2036.2005.02621.x","volume":"22","author":"A Chan","year":"2005","unstructured":"Chan A, Lam K, Hui W, Hu W, Li J, Lai K, Chan C, Yuen M, Lam S, Wong B (2005) Validated questionnaire on diagnosis and symptom severity for functional constipation in the chinese population. Aliment Pharmacol Ther 22(5):483\u2013488","journal-title":"Aliment Pharmacol Ther"},{"key":"3884_CR51","unstructured":"Roper N, Logan WW, Tierney AJ (2000) The Roper-Logan-Tierney model of nursing: based on activities of living. Elsevier Health Sciences"},{"issue":"8","key":"3884_CR52","doi-asserted-by":"crossref","first-page":"e19870","DOI":"10.2196\/19870","volume":"8","author":"X Shen","year":"2020","unstructured":"Shen X, Wang G, Kwan R. Y -C, Choi K. -S. (2020) Using dual neural network architecture to detect the risk of dementia with community health data: algorithm development and validation study. JMIR Medical Informatics 8(8):e19870","journal-title":"JMIR Medical Informatics"},{"issue":"3","key":"3884_CR53","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","volume":"9","author":"JA Suykens","year":"1999","unstructured":"Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293\u2013300","journal-title":"Neural Process Lett"},{"issue":"8","key":"3884_CR54","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","volume":"27","author":"T Fawcett","year":"2006","unstructured":"Fawcett T (2006) An introduction to roc analysis. Pattern Recognit Lett 27(8):861\u2013874","journal-title":"Pattern Recognit Lett"},{"key":"3884_CR55","doi-asserted-by":"crossref","unstructured":"Jeni LA, Cohn JF, De La Torre F (2013) Facing imbalanced data\u2013recommendations for the use of performance metrics. In: 2013 humaine association conference on affective computing and intelligent interaction. IEEE, pp 245\u2013251","DOI":"10.1109\/ACII.2013.47"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03884-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03884-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03884-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,20]],"date-time":"2023-05-20T10:22:06Z","timestamp":1684578126000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03884-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,8]]},"references-count":55,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["3884"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03884-8","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"type":"print","value":"0924-669X"},{"type":"electronic","value":"1573-7497"}],"subject":[],"published":{"date-parts":[[2022,9,8]]},"assertion":[{"value":"10 June 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 September 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}