{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,22]],"date-time":"2024-05-22T10:36:31Z","timestamp":1716374191400},"reference-count":54,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2022,7,29]],"date-time":"2022-07-29T00:00:00Z","timestamp":1659052800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,7,29]],"date-time":"2022-07-29T00:00:00Z","timestamp":1659052800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61375063"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1007\/s10489-022-03774-z","type":"journal-article","created":{"date-parts":[[2022,7,29]],"date-time":"2022-07-29T13:25:57Z","timestamp":1659101157000},"page":"7614-7633","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["A cell phone app for facial acne severity assessment"],"prefix":"10.1007","volume":"53","author":[{"given":"Jiaoju","family":"Wang","sequence":"first","affiliation":[]},{"given":"Yan","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Alphonse Houssou","family":"Hounye","sequence":"additional","affiliation":[]},{"given":"Cong","family":"Cao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6658-2187","authenticated-orcid":false,"given":"Muzhou","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Jianglin","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,29]]},"reference":[{"issue":"9","key":"3774_CR1","doi-asserted-by":"publisher","first-page":"2620","DOI":"10.3390\/nu12092620","volume":"12","author":"M-J Yim","year":"2020","unstructured":"Yim M-J, Lee JM, Kim H-S, Choi G, Kim Y-M, Lee D-S, Choi I-W (2020) Inhibitory effects of a sargassum miyabei yendo on cutibacterium acnes-induced skin inflammation. Nutrients 12(9):2620","journal-title":"Nutrients"},{"issue":"14","key":"3774_CR2","doi-asserted-by":"publisher","first-page":"1343","DOI":"10.1056\/NEJMcp1702493","volume":"79","author":"AL Zaenglein","year":"2018","unstructured":"Zaenglein AL (2018) Acne vulgaris. N Engl J Med 79(14):1343\u20131352","journal-title":"N Engl J Med"},{"issue":"1","key":"3774_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-020-18784-z","volume":"11","author":"B Oul\u00e8s","year":"2020","unstructured":"Oul\u00e8s B, Philippeos C, Segal J, Tihy M, Rudan MV, Cujba A-M, Grange PA, Quist S, Natsuga K, Deschamps L (2020) Contribution of gata6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nature Communications 11(1):1\u2013 17","journal-title":"Nature Communications"},{"issue":"2","key":"3774_CR4","doi-asserted-by":"publisher","first-page":"532","DOI":"10.1016\/j.jaad.2020.02.040","volume":"83","author":"DV Samuels","year":"2020","unstructured":"Samuels DV, Rosenthal R, Lin R, Chaudhari S, Natsuaki MN (2020) Acne vulgaris and risk of depression and anxiety: a meta-analytic review. J Am Acad Dermatol 83(2):532\u2013541","journal-title":"J Am Acad Dermatol"},{"issue":"3","key":"3774_CR5","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1111\/bjd.16099","volume":"178","author":"I Vallerand","year":"2018","unstructured":"Vallerand I, Lewinson R, Parsons L, Lowerison M, Frolkis A, Kaplan G, Barnabe C, Bulloch A, Patten S (2018) Risk of depression among patients with acne in the UK: a population-based cohort study. Br J Dermatol Suppl 178(3):194\u2013195","journal-title":"Br J Dermatol Suppl"},{"key":"3774_CR6","doi-asserted-by":"crossref","unstructured":"Wu X, Wen N, Liang J, Lai Y-K, She D, Cheng M-M, Yang J (2019) Joint acne image grading and counting via label distribution learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp 10642\u2013 10651","DOI":"10.1109\/ICCV.2019.01074"},{"issue":"8","key":"3774_CR7","doi-asserted-by":"publisher","first-page":"2109","DOI":"10.1111\/jocd.13255","volume":"19","author":"Y Akpinar Kara","year":"2020","unstructured":"Akpinar Kara Y, Ozdemir D (2020) Evaluation of food consumption in patients with acne vulgaris and its relationship with acne severity. J Cosmet Dermatol 19(8):2109\u20132113","journal-title":"J Cosmet Dermatol"},{"issue":"1","key":"3774_CR8","first-page":"1","volume":"8","author":"X Shen","year":"2018","unstructured":"Shen X, Zhang J, Yan C, Zhou H (2018) An automatic diagnosis method of facial acne vulgaris based on convolutional neural network. Scientific Reports 8(1):1\u201310","journal-title":"Scientific Reports"},{"issue":"2","key":"3774_CR9","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1111\/srt.12794","volume":"26","author":"ZV Lim","year":"2020","unstructured":"Lim ZV, Akram F, Ngo CP, Winarto AA, Lee WQ, Liang K, Oon HH, Thng STG, Lee HK (2020) Automated grading of acne vulgaris by deep learning with convolutional neural networks. Skin Res Technol 26(2):187\u2013192","journal-title":"Skin Res Technol"},{"issue":"4","key":"3774_CR10","first-page":"381","volume":"23","author":"C Jung","year":"2019","unstructured":"Jung C, Yeo I, Jung H (2019) Classification model of facial acne using deep learning. J Korea Inst Inf Commun Eng 23(4):381\u2013 387","journal-title":"J Korea Inst Inf Commun Eng"},{"key":"3774_CR11","doi-asserted-by":"crossref","unstructured":"Yang Y, Guo L, Wu Q, Zhang M, Zeng R, Ding H, Zheng H, Xie J, Li Y, Ge Y et al (2021) Construction and evaluation of a deep learning model for assessing acne vulgaris using clinical images. Dermatology and Therapy, pp 1\u201310","DOI":"10.1007\/s13555-021-00541-9"},{"issue":"6","key":"3774_CR12","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1016\/j.jaad.2020.06.156","volume":"83","author":"S Seite","year":"2020","unstructured":"Seite S, Moyal D, Abidi K, Le Dantec G, Khammari A, Benzaquen M, Dr\u00e9no B (2020) 14034 development and accuracy of an artificial intelligence algorithm for acne evaluation. J Am Acad Dermatol 83(6):17","journal-title":"J Am Acad Dermatol"},{"key":"3774_CR13","doi-asserted-by":"crossref","unstructured":"Radosavovic I, Kosaraju RP, Girshick R, He K, Doll\u00e1r P (2020) Designing network design spaces. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 10428\u201310436","DOI":"10.1109\/CVPR42600.2020.01044"},{"issue":"4","key":"3774_CR14","doi-asserted-by":"publisher","first-page":"3825","DOI":"10.1007\/s10489-021-02619-5","volume":"52","author":"D Muthusamy","year":"2022","unstructured":"Muthusamy D, Rakkimuthu P (2022) Steepest deep bipolar cascade correlation for finger-vein verification. Appl Intell 52(4):3825\u20133845","journal-title":"Appl Intell"},{"issue":"5","key":"3774_CR15","doi-asserted-by":"publisher","first-page":"2988","DOI":"10.1007\/s10489-020-02122-3","volume":"51","author":"H Mittal","year":"2021","unstructured":"Mittal H, Pandey AC, Pal R, Tripathi A (2021) A new clustering method for the diagnosis of covid19 using medical images. Appl Intell 51(5):2988\u20133011","journal-title":"Appl Intell"},{"issue":"2","key":"3774_CR16","doi-asserted-by":"publisher","first-page":"854","DOI":"10.1007\/s10489-020-01829-7","volume":"51","author":"A Abbas","year":"2021","unstructured":"Abbas A, Abdelsamea MM, Gaber MM (2021) Classification of covid-19 in chest x-ray images using detrac deep convolutional neural network. Appl Intell 51(2):854\u2013864","journal-title":"Appl Intell"},{"issue":"6","key":"3774_CR17","doi-asserted-by":"publisher","first-page":"900","DOI":"10.1038\/s41591-020-0842-3","volume":"26","author":"Y Liu","year":"2020","unstructured":"Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Kanada K, de Oliveira Marinho G, Gallegos J, Gabriele S (2020) A deep learning system for differential diagnosis of skin diseases. Nat Med 26 (6):900\u2013908","journal-title":"Nat Med"},{"key":"3774_CR18","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.ejca.2020.11.020","volume":"145","author":"RC Maron","year":"2021","unstructured":"Maron RC, Haggenm\u00fcller S, Von Kalle C, Utikal JS, Meier F, Gellrich FF, Hauschild A, French LE, Schlaak M, Ghoreschi K (2021) Robustness of convolutional neural networks in recognition of pigmented skin lesions. Eur J Cancer 145:81\u201391","journal-title":"Eur J Cancer"},{"issue":"5","key":"3774_CR19","doi-asserted-by":"publisher","first-page":"1230","DOI":"10.1016\/j.jid.2020.08.027","volume":"141","author":"B Dulmage","year":"2021","unstructured":"Dulmage B, Tegtmeyer K, Zhang MZ, Colavincenzo M, Xu S (2021) A point-of-care, real-time artificial intelligence system to support clinician diagnosis of a wide range of skin diseases. J Investig Dermatol 141(5):1230\u20131235","journal-title":"J Investig Dermatol"},{"issue":"1","key":"3774_CR20","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1109\/TMI.2020.3027341","volume":"40","author":"H Wu","year":"2020","unstructured":"Wu H, Pan J, Li Z, Wen Z, Qin J (2020) Automated skin lesion segmentation via an adaptive dual attention module. IEEE Trans Med Imaging 40(1):357\u2013370","journal-title":"IEEE Trans Med Imaging"},{"key":"3774_CR21","doi-asserted-by":"crossref","unstructured":"Wang Z, Keane PA, Chiang M, Cheung CY, Wong TY, Ting DSW (2020) Artificial intelligence and deep learning in ophthalmology. Artif Intell Med, pp 1\u201334","DOI":"10.1007\/978-3-030-58080-3_200-1"},{"key":"3774_CR22","doi-asserted-by":"crossref","unstructured":"Schmidt-Erfurth U, Reiter GS, Riedl S, Seeb\u00f6ck P, Vogl W-D, Blodi BA, Domalpally A, Fawzi A, Jia Y, Sarraf D et al (2021) Ai-based monitoring of retinal fluid in disease activity and under therapy. Prog Retin Eye Res, pp 100972","DOI":"10.1016\/j.preteyeres.2021.100972"},{"key":"3774_CR23","doi-asserted-by":"crossref","unstructured":"Phaphuangwittayakul A, Guo Y, Ying F, Dawod AY, Angkurawaranon S, Angkurawaranon C (2021) An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head ct images for traumatic brain injury. Appl Intell, pp 1\u201319","DOI":"10.1007\/s10489-021-02782-9"},{"issue":"8","key":"3774_CR24","doi-asserted-by":"publisher","first-page":"2042","DOI":"10.1109\/TMI.2021.3070847","volume":"40","author":"J Lian","year":"2021","unstructured":"Lian J, Liu J, Zhang S, Gao K, Liu X, Zhang D, Yu Y (2021) A structure-aware relation network for thoracic diseases detection and segmentation. IEEE Trans Med Imaging 40(8):2042\u20132052","journal-title":"IEEE Trans Med Imaging"},{"issue":"11","key":"3774_CR25","doi-asserted-by":"publisher","first-page":"3482","DOI":"10.1007\/s00259-021-05326-y","volume":"48","author":"B Shen","year":"2021","unstructured":"Shen B, Zhang Z, Shi X, Cao C, Zhang Z, Hu Z, Ji N, Tian J (2021) Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. European Journal Of Nuclear Medicine And Molecular Imaging 48(11):3482\u20133492","journal-title":"European Journal Of Nuclear Medicine And Molecular Imaging"},{"key":"3774_CR26","doi-asserted-by":"publisher","first-page":"101709","DOI":"10.1016\/j.media.2020.101709","volume":"63","author":"B Jie","year":"2020","unstructured":"Jie B, Liu M, Lian C, Shi F, Shen D (2020) Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis. Medical Image Analysis 63:101709","journal-title":"Medical Image Analysis"},{"issue":"1","key":"3774_CR27","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1109\/TNNLS.2021.3119071","volume":"33","author":"A Chaddad","year":"2021","unstructured":"Chaddad A, Hassan L, Desrosiers C (2021) Deep radiomic analysis for predicting coronavirus disease 2019 in computerized tomography and x-ray images. IEEE Trans Neural Netw Learn Syst 33(1):3\u201311","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"3774_CR28","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.neunet.2020.12.022","volume":"136","author":"U Kulkarni","year":"2021","unstructured":"Kulkarni U, Meena S, Gurlahosur SV, Bhogar G (2021) Quantization friendly mobilenet (qf-mobilenet) architecture for vision based applications on embedded platforms. Neural Netw 136:28\u201339","journal-title":"Neural Netw"},{"key":"3774_CR29","doi-asserted-by":"crossref","unstructured":"Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar M, Lee B (2022) A survey of modern deep learning based object detection models. Digit Signal Process, pp 103514","DOI":"10.1016\/j.dsp.2022.103514"},{"key":"3774_CR30","doi-asserted-by":"crossref","unstructured":"Li Z, Liu F, Yang W, Peng S, Zhou J (2021) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst","DOI":"10.1109\/TNNLS.2020.3007412"},{"key":"3774_CR31","doi-asserted-by":"publisher","first-page":"105892","DOI":"10.1109\/ACCESS.2021.3099952","volume":"9","author":"B Kaddar","year":"2021","unstructured":"Kaddar B, Fizazi H, Hern\u00e1ndez-Cabronero M, Sanchez V, Serra-Sagrist\u00e0 J (2021) Divnet: efficient convolutional neural network via multilevel hierarchical architecture design. IEEE Access 9:105892\u2013105901","journal-title":"IEEE Access"},{"key":"3774_CR32","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell, pp 42(8)","DOI":"10.1109\/TPAMI.2019.2913372"},{"issue":"2","key":"3774_CR33","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1007\/s13748-019-00203-0","volume":"9","author":"A Dhillon","year":"2020","unstructured":"Dhillon A, Verma GK (2020) Convolutional neural network: a review of models, methodologies and applications to object detection. Prog Artif Intell 9(2):85\u2013112","journal-title":"Prog Artif Intell"},{"issue":"6","key":"3774_CR34","doi-asserted-by":"publisher","first-page":"1705","DOI":"10.1109\/TNNLS.2018.2872995","volume":"30","author":"N Passalis","year":"2018","unstructured":"Passalis N, Tefas A (2018) Training lightweight deep convolutional neural networks using bag-of-features pooling. IEEE Trans Neural Netw Learn Syst 30(6):1705\u20131715","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"issue":"3","key":"3774_CR35","doi-asserted-by":"publisher","first-page":"932","DOI":"10.1109\/TNNLS.2021.3054746","volume":"32","author":"N Paluru","year":"2021","unstructured":"Paluru N, Dayal A, Jenssen HB, Sakinis T, Cenkeramaddi LR, Prakash J, Yalavarthy PK (2021) Anam-net: anamorphic depth embedding-based lightweight cnn for segmentation of anomalies in covid-19 chest ct images. IEEE Trans Neural Netw Learn Syst 32(3):932\u2013946","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"3774_CR36","doi-asserted-by":"publisher","first-page":"107461","DOI":"10.1016\/j.patcog.2020.107461","volume":"107","author":"J-H Luo","year":"2020","unstructured":"Luo J-H, Wu J (2020) Autopruner: an end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recogn 107:107461","journal-title":"Pattern Recogn"},{"issue":"3","key":"3774_CR37","doi-asserted-by":"publisher","first-page":"1114","DOI":"10.1109\/TCSVT.2020.2996231","volume":"31","author":"J Guo","year":"2020","unstructured":"Guo J, Zhang W, Ouyang W, Xu D (2020) Model compression using progressive channel pruning. IEEE Trans Circuits Syst Video Technol 31(3):1114\u20131124","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"issue":"7","key":"3774_CR38","doi-asserted-by":"publisher","first-page":"5113","DOI":"10.1007\/s10462-020-09816-7","volume":"53","author":"T Choudhary","year":"2020","unstructured":"Choudhary T, Mishra V, Goswami A, Sarangapani J (2020) A comprehensive survey on model compression and acceleration. Artif Intell Rev 53(7):5113\u20135155","journal-title":"Artif Intell Rev"},{"issue":"5","key":"3774_CR39","doi-asserted-by":"publisher","first-page":"696","DOI":"10.1109\/TC.2020.2995593","volume":"70","author":"C Gong","year":"2020","unstructured":"Gong C, Chen Y, Lu Y, Li T, Hao C, Chen D (2020) Vecq: minimal loss dnn model compression with vectorized weight quantization. IEEE Trans Comput 70(5):696\u2013710","journal-title":"IEEE Trans Comput"},{"key":"3774_CR40","doi-asserted-by":"crossref","unstructured":"Wang L, Yoon K-J (2021) Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans Pattern Anal Mach Intell","DOI":"10.1109\/TPAMI.2021.3055564"},{"key":"3774_CR41","doi-asserted-by":"crossref","unstructured":"Liu Y, Shu C, Wang J, Shen C (2020) Structured knowledge distillation for dense prediction. IEEE Trans Pattern Ana Mach Intell","DOI":"10.1109\/TPAMI.2020.3001940"},{"issue":"7","key":"3774_CR42","doi-asserted-by":"publisher","first-page":"2415","DOI":"10.1109\/TMI.2019.2963882","volume":"39","author":"Q Dou","year":"2020","unstructured":"Dou Q, Liu Q, Heng PA, Glocker B (2020) Unpaired multi-modal segmentation via knowledge distillation. IEEE Trans Med Imaging 39(7):2415\u20132425","journal-title":"IEEE Trans Med Imaging"},{"issue":"4","key":"3774_CR43","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1002\/lt.25950","volume":"27","author":"A Duarte-Rojo","year":"2021","unstructured":"Duarte-Rojo A, Bloomer PM, Rogers RJ, Hassan MA, Dunn MA, Tevar AD, Vivis SL, Bataller R, Hughes CB, Ferrando AA (2021) Introducing el-fit (exercise and liver fitness): a smartphone app to prehabilitate and monitor liver transplant candidates. Liver Transplant 27(4):502\u2013512","journal-title":"Liver Transplant"},{"issue":"10","key":"3774_CR44","doi-asserted-by":"publisher","first-page":"2130804","DOI":"10.1001\/jamanetworkopen.2021.30804","volume":"4","author":"T Krishnamurti","year":"2021","unstructured":"Krishnamurti T, Davis AL, Rodriguez S, Hayani L, Bernard M, Simhan HN (2021) Use of a smartphone app to explore potential underuse of prophylactic aspirin for preeclampsia. JAMA Network Open 4(10):2130804\u20132130804","journal-title":"JAMA Network Open"},{"key":"3774_CR45","doi-asserted-by":"crossref","unstructured":"Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN, Jain A, Walter FM, Williams HC, Deeks JJ (2020) Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ, vol 368","DOI":"10.1136\/bmj.m127"},{"key":"3774_CR46","doi-asserted-by":"publisher","first-page":"104458","DOI":"10.1016\/j.compbiomed.2021.104458","volume":"134","author":"E Goceri","year":"2021","unstructured":"Goceri E (2021) Diagnosis of skin diseases in the era of deep learning and mobile technology. Comput Biol Med 134:104458","journal-title":"Comput Biol Med"},{"key":"3774_CR47","doi-asserted-by":"publisher","first-page":"143481","DOI":"10.1109\/ACCESS.2021.3120199","volume":"9","author":"S Verma","year":"2021","unstructured":"Verma S, Razzaque MA, Sangtongdee U, Arpnikanondt C, Tassaneetrithep B, Hossain A (2021) Digital diagnosis of hand, foot, and mouth disease using hybrid deep neural networks. IEEE Access 9:143481\u2013143494","journal-title":"IEEE Access"},{"issue":"2","key":"3774_CR48","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.jaad.2017.09.078","volume":"78","author":"DM Thiboutot","year":"2018","unstructured":"Thiboutot DM, Dr\u00e9no B, Abanmi A, Alexis AF, Araviiskaia E, Cabal MIB, Bettoli V, Casintahan F, Chow S, Da Costa A (2018) Practical management of acne for clinicians: an international consensus from the global alliance to improve outcomes in acne. J Am Acad Dermatol 78(2):1\u201323","journal-title":"J Am Acad Dermatol"},{"key":"3774_CR49","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.asoc.2018.05.018","volume":"70","author":"A Garcia-Garcia","year":"2018","unstructured":"Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, Garcia-Rodriguez J (2018) A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput 70:41\u201365","journal-title":"Appl Soft Comput"},{"issue":"2","key":"3774_CR50","doi-asserted-by":"publisher","first-page":"1362","DOI":"10.1007\/s10489-021-02496-y","volume":"52","author":"J Wang","year":"2022","unstructured":"Wang J, Yu J, He Z (2022) Deca: a novel multi-scale efficient channel attention module for object detection in real-life fire images. Appl Intell 52(2):1362\u20131375","journal-title":"Appl Intell"},{"issue":"6","key":"3774_CR51","doi-asserted-by":"publisher","first-page":"1789","DOI":"10.1007\/s11263-021-01453-z","volume":"129","author":"J Gou","year":"2021","unstructured":"Gou J, Yu B, Maybank SJ, Tao D (2021) Knowledge distillation: a survey. Int J Comput Vis 129(6):1789\u20131819","journal-title":"Int J Comput Vis"},{"key":"3774_CR52","doi-asserted-by":"publisher","first-page":"103866","DOI":"10.1016\/j.compbiomed.2020.103866","volume":"123","author":"TF Romdhane","year":"2020","unstructured":"Romdhane TF, Pr MA (2020) Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss. Comput Biol Med 123:103866","journal-title":"Comput Biol Med"},{"key":"3774_CR53","doi-asserted-by":"publisher","first-page":"199440","DOI":"10.1109\/ACCESS.2020.3034828","volume":"8","author":"A Asperti","year":"2020","unstructured":"Asperti A, Trentin M (2020) Balancing reconstruction error and kullback-leibler divergence in variational autoencoders. IEEE Access 8:199440\u2013199448","journal-title":"IEEE Access"},{"key":"3774_CR54","doi-asserted-by":"crossref","unstructured":"Nguyen A, Thai H, Le T (2021) Severity assessment of facial acne. In: International Conference on Computational Collective Intelligence, pp 599\u2013612. Springer","DOI":"10.1007\/978-3-030-88081-1_45"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03774-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03774-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03774-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,16]],"date-time":"2023-03-16T02:42:08Z","timestamp":1678934528000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03774-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,29]]},"references-count":54,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["3774"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03774-z","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,29]]},"assertion":[{"value":"15 May 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 July 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}