{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T00:33:49Z","timestamp":1726446829441},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2022,5,30]],"date-time":"2022-05-30T00:00:00Z","timestamp":1653868800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,5,30]],"date-time":"2022-05-30T00:00:00Z","timestamp":1653868800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1007\/s10489-022-03604-2","type":"journal-article","created":{"date-parts":[[2022,5,30]],"date-time":"2022-05-30T17:06:31Z","timestamp":1653930391000},"page":"3398-3414","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Discrete cosine transform for filter pruning"],"prefix":"10.1007","volume":"53","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7212-1755","authenticated-orcid":false,"given":"Yaosen","family":"Chen","sequence":"first","affiliation":[]},{"given":"Renshuang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Bing","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xuming","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Xinhua","family":"Suo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,30]]},"reference":[{"key":"3604_CR1","unstructured":"Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2017) Pruning filters for efficient convnets. In: Proceedings of ICLR"},{"key":"3604_CR2","doi-asserted-by":"crossref","unstructured":"Huang Z, Wang N (2018) Data-driven sparse structure selection for deep neural networks. In: Proceedings of ECCV, pp 304\u2013320","DOI":"10.1007\/978-3-030-01270-0_19"},{"key":"3604_CR3","doi-asserted-by":"crossref","unstructured":"Zhao C, Ni B, Zhang J, Zhao Q, Zhang W, Tian Q (2019) Variational convolutional neural network pruning. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 2780\u20132789","DOI":"10.1109\/CVPR.2019.00289"},{"key":"3604_CR4","doi-asserted-by":"crossref","unstructured":"Lin S, Ji R, Yan C, Zhang B, Cao L, Ye Q, Huang F, Doermann D (2019) Towards optimal structured cnn pruning via generative adversarial learning. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 2780\u20132789","DOI":"10.1109\/CVPR.2019.00290"},{"key":"3604_CR5","doi-asserted-by":"crossref","unstructured":"Lin M, Ji R, Wang Y et al (2020) HRank: Filter Pruning using High-Rank Feature Map. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 1529\u20131538","DOI":"10.1109\/CVPR42600.2020.00160"},{"key":"3604_CR6","unstructured":"Hu H, Peng R, Tai Y, Tang C (2016) Network trimming: A data-driven neuron pruning approach towards efficient deep architectures, arXiv:1607.03250"},{"key":"3604_CR7","doi-asserted-by":"crossref","unstructured":"Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learning efficient convolutional networks through network slimming. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 2736\u20132744","DOI":"10.1109\/ICCV.2017.298"},{"key":"3604_CR8","doi-asserted-by":"crossref","unstructured":"Yu R, Li A, Chen CF, Lai JH, Morariu VI, Han X, Gao M, Lin CY, Davis LS (2018) Nisp: Pruning networks using neuron importance score propagation. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 9194\u20139203","DOI":"10.1109\/CVPR.2018.00958"},{"key":"3604_CR9","doi-asserted-by":"crossref","unstructured":"He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 1389\u20131397","DOI":"10.1109\/ICCV.2017.155"},{"key":"3604_CR10","doi-asserted-by":"crossref","unstructured":"Luo JH, Wu J, Lin W (2017) Thinet: A filter level pruning method for deep neural network compression. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 5058\u20135066","DOI":"10.1109\/ICCV.2017.541"},{"key":"3604_CR11","doi-asserted-by":"crossref","unstructured":"Lin S, Ji R, Li Y, Wu Y, Huang F, Zhang B (2018) Accelerating convolutional networks via global & dynamic filter pruning. In: International Joint Conference on Artificial Intelligence (IJCAI), pp 7","DOI":"10.24963\/ijcai.2018\/336"},{"key":"3604_CR12","unstructured":"Denil M, Shakibi B, Dinh L, de Freitas N, et al. (2013) Predicting parameters in deep learning, arXiv:1306.0543"},{"key":"3604_CR13","unstructured":"LeCun Y, Denker JS, Solla SA, Howard RE, Jackel LD (1990) Optimal brain damage. In: Advances in neural information processing systems, pp 598\u2013605"},{"key":"3604_CR14","unstructured":"Hassibi B, Stork DG (1993) Second order derivatives for network pruning: Optimal brain surgeon. Morgan Kaufmann, pp 164\u2013171"},{"key":"3604_CR15","unstructured":"Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Proceedings of NIPS, pp 1135\u20131143"},{"key":"3604_CR16","unstructured":"Wei W et al (2016) Learning Structured Sparsity in Deep Neural Networks. In: Proceedings of NIPS, pp 2074\u20132082"},{"key":"3604_CR17","doi-asserted-by":"crossref","unstructured":"Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transfom. IEEE Trans Comput:90\u201393","DOI":"10.1109\/T-C.1974.223784"},{"issue":"4","key":"3604_CR18","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1145\/103085.103089","volume":"34","author":"GK Wallace","year":"1991","unstructured":"Wallace GK (1991) The jpeg still picture compression standard. Commun ACM 34(4):30\u201344","journal-title":"Commun ACM"},{"issue":"1","key":"3604_CR19","first-page":"3","volume":"17","author":"M Rabbani","year":"2002","unstructured":"Rabbani M, Joshi R (2002) An overview of the jpeg 2000 still image compression standard. Signal Process: Image Commun 17(1):3\u201348","journal-title":"Signal Process: Image Commun"},{"key":"3604_CR20","doi-asserted-by":"crossref","unstructured":"Chen W et al (2016) Compressing convolutional neural networks in the frequency domain, the 22nd ACM SIGKDD International Conference ACM","DOI":"10.1145\/2939672.2939839"},{"key":"3604_CR21","unstructured":"Chen W, Wilson JT, Tyree S, Weinberger KQ, Chen Y (2015) Compressing neural networks with the hashing trick. In: Proceedings of ICML, pp 2285\u20132294"},{"key":"3604_CR22","unstructured":"Han S, Mao H, Dally WJ (2016) Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. In: Proceedings of ICLR"},{"key":"3604_CR23","unstructured":"Courbariaux M, Bengio Y (2016) Binarynet: Training deep neural networks with weights and activations constrained to +\u20091 or -1, arXiv:1602.02830"},{"key":"3604_CR24","unstructured":"Baker B, Gupta O, Naik N et al (2016) Designing neural network architectures using reinforcement learning, [J]. arXiv:1611.02167"},{"key":"3604_CR25","unstructured":"Real E, Moore S, Selle A et al (2017) Large-scale evolution of image classifiers, [J]. arXiv:1703.01041"},{"key":"3604_CR26","unstructured":"Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. Computer ence 14.7:38\u201339"},{"key":"3604_CR27","unstructured":"Huang Z, Wang N (2017) Like what you like: Knowledge distill via neuron selectivity transfer, [J]. arXiv:1707.01219"},{"key":"3604_CR28","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition, [J]. arXiv:1409.1556"},{"key":"3604_CR29","doi-asserted-by":"crossref","unstructured":"Szegedy C, Liu W, Jia Y, et al. (2015) Going deeper with convolutions. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit (CVPR), pp 1\u20139","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"3604_CR30","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Laurens VDM et al (2017) Densely Connected Convolutional Networks. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 4700\u20134708","DOI":"10.1109\/CVPR.2017.243"},{"key":"3604_CR31","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S et al (2016) Deep Residual Learning for Image Recognition. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"3604_CR32","unstructured":"Liu B, Wang M, Foroosh H et al (2015) Sparse Convolutional Neural Networks. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 806\u2013814"},{"key":"3604_CR33","unstructured":"Lee N, Ajanthan T, Torr PHS (2018) Snip: Single-shot network pruning based on connection sensitivity, [J]. arXiv:1810.02340"},{"key":"3604_CR34","unstructured":"Molchanov P, Tyree S, Karras T, et al. (2016) Pruning convolutional neural networks for resource efficient inference, [J]. arXiv:1611.06440"},{"key":"3604_CR35","unstructured":"Ye J, Lu X, Lin Z, et al. (2018) Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers, [J]. arXiv:1802.00124"},{"key":"3604_CR36","unstructured":"Krizhevsky A, Hinton G, et al. (2009) Learning multiple layers of features from tiny images, Technical report, Citeseer, pp 2, 5"},{"key":"3604_CR37","doi-asserted-by":"crossref","unstructured":"Qin X, Zhang Z, Huang C, et al. (2019) BASNEt: Boundary-aware Salient Object Detection. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit (CVPR), pp 7479\u20137489","DOI":"10.1109\/CVPR.2019.00766"},{"key":"3604_CR38","doi-asserted-by":"publisher","first-page":"107404","DOI":"10.1016\/j.patcog.2020.107404","volume":"106","author":"X Qin","year":"2020","unstructured":"Qin X, Zhang Z, Huang C, et al. (2020) U2-net: Going deeper with nested U-structure for salient object detection. [J] Pattern Recogn 106:107404","journal-title":"[J] Pattern Recogn"},{"key":"3604_CR39","first-page":"5","volume":"2","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Internation J Comput Vis (IJCV) 2:5","journal-title":"Internation J Comput Vis (IJCV)"},{"key":"3604_CR40","doi-asserted-by":"crossref","unstructured":"Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 136\u2013145","DOI":"10.1109\/CVPR.2017.404"},{"issue":"11","key":"3604_CR41","doi-asserted-by":"publisher","first-page":"5012","DOI":"10.1109\/TIP.2016.2602079","volume":"25","author":"G Li","year":"2016","unstructured":"Li G, Yu Y (2016) Visual saliency detection based on multiscale deep cnn features. IEEE Trans Image Process 25(11):5012\u2013 5024","journal-title":"IEEE Trans Image Process"},{"key":"3604_CR42","doi-asserted-by":"crossref","unstructured":"Zhang P, Wang D, Lu H, Wang H, Yin B (2017) Learning uncertain convolutional features for accurate saliency detection. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 212\u2013221","DOI":"10.1109\/ICCV.2017.32"},{"key":"3604_CR43","doi-asserted-by":"crossref","unstructured":"Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: Aggregating multi-level convolutional features for salient object detection. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 202\u2013211","DOI":"10.1109\/ICCV.2017.31"},{"key":"3604_CR44","doi-asserted-by":"crossref","unstructured":"Luo Z, Mishra A, Achkar A, Eichel J, Li S, Jodoin PM (2017) Non-local deep features for salient object detection. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 6593\u20136601","DOI":"10.1109\/CVPR.2017.698"},{"key":"3604_CR45","doi-asserted-by":"crossref","unstructured":"Chen S, Tan X, Wang BN, Hu X (2018) Reverse attention for salient object detection. In: Proceedings of ECCV, pp 234\u2013 250","DOI":"10.1007\/978-3-030-01240-3_15"},{"key":"3604_CR46","doi-asserted-by":"crossref","unstructured":"Zeng Y, Zhuge Y, Lu H, Zhang L, Qian M, Yu Y (2019) Multi-source weak supervision for saliency detection. In: Proceedings of IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 6074\u20136083","DOI":"10.1109\/CVPR.2019.00623"},{"key":"3604_CR47","doi-asserted-by":"crossref","unstructured":"Deng Z, Hu X, Zhu L, Xu X, Qin J, Han G, Heng PA (2018) R3net: Recurrent residual refinement network for saliency detection. In: Proceedings of Int. Joint Conf. Artif. Intell.(AAAI), pp 684\u2013690","DOI":"10.24963\/ijcai.2018\/95"},{"key":"3604_CR48","doi-asserted-by":"crossref","unstructured":"Wang T, Borji A, Zhang L, Zhang P, Lu H (2017) A stagewise refinement model for detecting salient objects in images. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 4039\u20134048","DOI":"10.1109\/ICCV.2017.433"},{"key":"3604_CR49","first-page":"249","volume":"9","author":"X Glorot","year":"2010","unstructured":"Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks, [J]. J Mach Learn Res 9:249\u2013256","journal-title":"J Mach Learn Res"},{"key":"3604_CR50","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, et al. (2015) Delving deep into rectifiers: surpassing human-level performance on ImagEnet classification. In: Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), pp 1026\u20131034","DOI":"10.1109\/ICCV.2015.123"},{"key":"3604_CR51","unstructured":"Liu Z, Xu J, Peng X et al (2018) Frequency-domain dynamic pruning for convolutional neural networks, [C]\/\/Advances in Neural Information Processing Systems, pp 1043\u20131053"},{"key":"3604_CR52","doi-asserted-by":"crossref","unstructured":"Wang X, Liang J (2016) Scalable compression of deep neural networks, [C]\/\/Proceedings of the 24th ACM international conference on Multimedia, pp 511\u2013515","DOI":"10.1145\/2964284.2967273"},{"key":"3604_CR53","doi-asserted-by":"crossref","unstructured":"Chen Z, Wang S, Wu Do et al (2018) From data to knowledge: Deep learning model compression, transmission and communication, [C]\/\/Proceedings of the 26th ACM international conference on Multimedia, pp 1625\u20131633","DOI":"10.1145\/3240508.3240654"},{"key":"3604_CR54","first-page":"51","volume":"2","author":"H Bilal","year":"2021","unstructured":"Bilal H, Kumar A, Yin B (2021) Pruning filters with L1-norm and capped L1-norm for CNN compression. Appl Intell 2:51","journal-title":"Appl Intell"},{"key":"3604_CR55","doi-asserted-by":"publisher","unstructured":"Singh P, Verma VK, Rai P, Namboodiri VP (2020) Acceleration of deep convolutional neural networks using adaptive filter pruning. IEEE J Sel Top Signal Process 14(4):838\u2013847. https:\/\/doi.org\/10.1109\/JSTSP.2020.2992390https:\/\/doi.org\/10.1109\/JSTSP.2020.2992390","DOI":"10.1109\/JSTSP.2020.2992390 10.1109\/JSTSP.2020.2992390"},{"issue":"2","key":"3604_CR56","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1007\/s11760-020-01758-5","volume":"15","author":"Y Chen","year":"2021","unstructured":"Chen Y, Guo B, Shen Y, et al. (2021) Using efficient group pseudo-3D network to learn spatio-temporal features[J]. SIViP 15(2):361\u2013369","journal-title":"SIViP"},{"key":"3604_CR57","doi-asserted-by":"publisher","first-page":"104144","DOI":"10.1016\/j.imavis.2021.104144","volume":"109","author":"Y Chen","year":"2021","unstructured":"Chen Y, Guo B, Shen Y, et al. (2021) Boundary graph convolutional network for temporal action detection[J]. Image Vis Comput 109:104144","journal-title":"Image Vis Comput"},{"key":"3604_CR58","doi-asserted-by":"publisher","unstructured":"Chen Y, Guo B, Shen Y, Wang W, Lu W, Suo X Capsule boundary network with 3D convolutional dynamic routing for temporal action detection. In: IEEE Transactions on Circuits and Systems for Video Technology. https:\/\/doi.org\/10.1109\/TCSVT.2021.3104226https:\/\/doi.org\/10.1109\/TCSVT.2021.3104226","DOI":"10.1109\/TCSVT.2021.3104226 10.1109\/TCSVT.2021.3104226"},{"key":"3604_CR59","doi-asserted-by":"publisher","unstructured":"Liu X, Wu L, Dai C, Chao H-C (2021) Compressing CNNs using multilevel filter pruning for the edge nodes of multimedia internet of things. IEEE Internet Things J 8(14):11041\u201311051. https:\/\/doi.org\/10.1109\/JIOT.2021.3052016","DOI":"10.1109\/JIOT.2021.3052016"},{"key":"3604_CR60","doi-asserted-by":"publisher","unstructured":"Dai C, Cheng H, Liu X (2020) A tucker decomposition based on adaptive genetic algorithm for efficient deep model compression. IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC\/SmartCity\/DSS), pp 507\u2013512. https:\/\/doi.org\/10.1109\/HPCC-SmartCity-DSS50907.2020.00062","DOI":"10.1109\/HPCC-SmartCity-DSS50907.2020.00062"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03604-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03604-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03604-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T11:10:28Z","timestamp":1673435428000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03604-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,30]]},"references-count":60,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2023,2]]}},"alternative-id":["3604"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03604-2","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,5,30]]},"assertion":[{"value":"10 March 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 May 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}