{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T17:11:02Z","timestamp":1726333862698},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,4,30]],"date-time":"2022-04-30T00:00:00Z","timestamp":1651276800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,4,30]],"date-time":"2022-04-30T00:00:00Z","timestamp":1651276800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1007\/s10489-022-03549-6","type":"journal-article","created":{"date-parts":[[2022,4,30]],"date-time":"2022-04-30T08:03:30Z","timestamp":1651305810000},"page":"1586-1604","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":29,"title":["MS-SSD: multi-scale single shot detector for ship detection in remote sensing images"],"prefix":"10.1007","volume":"53","author":[{"given":"Guangqi","family":"Wen","sequence":"first","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Haonan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hanlin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinghui","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,30]]},"reference":[{"key":"3549_CR1","doi-asserted-by":"crossref","unstructured":"Wang X, Kong T, Shen C, Jiang Y, Li L (2020) Solo: Segmenting objects by locations. In: European conference on computer vision. Springer, pp 649\u2013665","DOI":"10.1007\/978-3-030-58523-5_38"},{"key":"3549_CR2","doi-asserted-by":"crossref","unstructured":"Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg A C (2016) Ssd: Single shot multibox detector. In: European conference on computer vision. Springer, pp 21\u201337","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"3549_CR3","doi-asserted-by":"crossref","unstructured":"Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H (2017) Couplenet: Coupling global structure with local parts for object detection. In: Proceedings of the IEEE international conference on computer vision, pp 4126\u20134134","DOI":"10.1109\/ICCV.2017.444"},{"key":"3549_CR4","doi-asserted-by":"crossref","unstructured":"Zhang S, Wen L, Bian X, Lei Z, Li S Z (2018) Single-shot refinement neural network for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4203\u20134212","DOI":"10.1109\/CVPR.2018.00442"},{"key":"3549_CR5","doi-asserted-by":"crossref","unstructured":"Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779\u2013788","DOI":"10.1109\/CVPR.2016.91"},{"issue":"4","key":"3549_CR6","doi-asserted-by":"publisher","first-page":"612","DOI":"10.1109\/LGRS.2018.2790909","volume":"15","author":"J Han","year":"2018","unstructured":"Han J, Liang K, Zhou B, Zhu X, Zhao J, Zhao L (2018) Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci Remote Sens Lett 15(4):612\u2013616","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"3549_CR7","doi-asserted-by":"crossref","unstructured":"Kisantal M, Wojna Z, Murawski J, Naruniec J, Cho K (2019) Augmentation for small object detection. CoRR, arXiv:1902.07296","DOI":"10.5121\/csit.2019.91713"},{"key":"3549_CR8","doi-asserted-by":"crossref","unstructured":"Chen C, Liu M-Y, Tuzel O, Xiao J (2016) R-cnn for small object detection. In: Asian conference on computer vision. Springer, pp 214\u2013230","DOI":"10.1007\/978-3-319-54193-8_14"},{"key":"3549_CR9","doi-asserted-by":"crossref","unstructured":"Hu G X, Yang Z, Hu L, Huang L, Han J M (2018) Small object detection with multiscale features. International Journal of Digital Multimedia Broadcasting","DOI":"10.1155\/2018\/4546896"},{"key":"3549_CR10","doi-asserted-by":"crossref","unstructured":"Bai Y, Zhang Y, Ding M, Ghanem B (2018) Sod-mtgan: Small object detection via multi-task generative adversarial network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 206\u2013221","DOI":"10.1007\/978-3-030-01261-8_13"},{"key":"3549_CR11","doi-asserted-by":"crossref","unstructured":"Pal S K, Pramanik A, Maiti J, Mitra P (2021) Deep learning in multi-object detection and tracking: state of the art. Appl Intell:1\u201330","DOI":"10.1007\/s10489-021-02293-7"},{"key":"3549_CR12","doi-asserted-by":"crossref","unstructured":"Tian G, Liu J, Zhao H, Yang W (2021) Small object detection via dual inspection mechanism for uav visual images. Appl Intell:1\u201314","DOI":"10.1007\/s10489-021-02512-1"},{"key":"3549_CR13","doi-asserted-by":"crossref","unstructured":"Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580\u2013587","DOI":"10.1109\/CVPR.2014.81"},{"key":"3549_CR14","first-page":"91","volume":"28","author":"S Ren","year":"2015","unstructured":"Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst 28:91\u201399","journal-title":"Adv Neural Inf Process Syst"},{"key":"3549_CR15","doi-asserted-by":"publisher","first-page":"128837","DOI":"10.1109\/ACCESS.2019.2939201","volume":"7","author":"L Jiao","year":"2019","unstructured":"Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, Qu R (2019) A survey of deep learning-based object detection. IEEE access 7:128837\u2013128868","journal-title":"IEEE access"},{"key":"3549_CR16","doi-asserted-by":"crossref","unstructured":"Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440\u20131448","DOI":"10.1109\/ICCV.2015.169"},{"key":"3549_CR17","doi-asserted-by":"crossref","unstructured":"Lin T-Y, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"key":"3549_CR18","unstructured":"Fu C-Y, Liu W, Ranga A, Tyagi A, Berg A C (2017) Dssd: Deconvolutional single shot detector. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1\u201311"},{"key":"3549_CR19","unstructured":"Yuxi Li J L, Lin W (2018) Tiny-DSOD: Lightweight object detection for resource-restricted usage. In: BMVC"},{"key":"3549_CR20","doi-asserted-by":"crossref","unstructured":"Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2147\u20132154","DOI":"10.1109\/CVPR.2014.276"},{"key":"3549_CR21","doi-asserted-by":"crossref","unstructured":"Bell S, Zitnick C L, Bala K, Girshick R (2016) Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874\u20132883","DOI":"10.1109\/CVPR.2016.314"},{"key":"3549_CR22","unstructured":"Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556"},{"key":"3549_CR23","doi-asserted-by":"crossref","unstructured":"Hosang J, Benenson R, Schiele B (2017) Learning non-maximum suppression. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4507\u20134515","DOI":"10.1109\/CVPR.2017.685"},{"issue":"6","key":"3549_CR24","first-page":"33","volume":"29","author":"EH Adelson","year":"1984","unstructured":"Adelson E H, Anderson C H, Bergen J R, Burt P J, Ogden J M (1984) Pyramid methods in image processing. RCA Eng 29(6): 33\u201341","journal-title":"RCA Eng"},{"key":"3549_CR25","doi-asserted-by":"crossref","unstructured":"Singh B, Davis L S (2018) An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3578\u20133587","DOI":"10.1109\/CVPR.2018.00377"},{"issue":"12","key":"3549_CR26","doi-asserted-by":"publisher","first-page":"2878","DOI":"10.1109\/TPAMI.2012.261","volume":"35","author":"Y Yang","year":"2012","unstructured":"Yang Y, Ramanan D (2012) Articulated human detection with flexible mixtures of parts. IEEE Trans Pattern Anal Mach Intell 35(12):2878\u20132890","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3549_CR27","doi-asserted-by":"crossref","unstructured":"Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR\u201905), vol 1. IEEE, pp 886\u2013893","DOI":"10.1109\/CVPR.2005.177"},{"key":"3549_CR28","doi-asserted-by":"crossref","unstructured":"Ding Y, Xiao J (2012) Contextual boost for pedestrian detection. In: 2012 IEEE Conference on computer vision and pattern recognition. IEEE, pp 2895\u20132902","DOI":"10.1109\/CVPR.2012.6248016"},{"issue":"8","key":"3549_CR29","doi-asserted-by":"publisher","first-page":"1532","DOI":"10.1109\/TPAMI.2014.2300479","volume":"36","author":"P Doll\u00e1r","year":"2014","unstructured":"Doll\u00e1r P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell 36(8):1532\u20131545","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"9","key":"3549_CR30","doi-asserted-by":"publisher","first-page":"1627","DOI":"10.1109\/TPAMI.2009.167","volume":"32","author":"PF Felzenszwalb","year":"2009","unstructured":"Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D (2009) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627\u20131645","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3549_CR31","doi-asserted-by":"crossref","unstructured":"Yang J, Wu B, Li L, Cao P, Zaiane O (2021) Msds-unet: A multi-scale deeply supervised 3d u-net for automatic segmentation of lung tumor in ct. Comput Med Imaging Graph:101957","DOI":"10.1016\/j.compmedimag.2021.101957"},{"issue":"8","key":"3549_CR32","doi-asserted-by":"publisher","first-page":"3919","DOI":"10.1109\/TIP.2016.2579306","volume":"25","author":"X Li","year":"2016","unstructured":"Li X, Zhao L, Wei L, Yang M-H, Wu F, Zhuang Y, Ling H, Wang J (2016) Deepsaliency: Multi-task deep neural network model for salient object detection. IEEE Trans Image Process 25 (8):3919\u20133930","journal-title":"IEEE Trans Image Process"},{"issue":"6","key":"3549_CR33","doi-asserted-by":"publisher","first-page":"3311","DOI":"10.1007\/s10489-020-01949-0","volume":"51","author":"C Sun","year":"2021","unstructured":"Sun C, Ai Y, Wang S, Zhang W (2021) Mask-guided ssd for small-object detection. Appl Intell 51(6):3311\u20133322","journal-title":"Appl Intell"},{"key":"3549_CR34","doi-asserted-by":"crossref","unstructured":"Wang G, Xiong Z, Liu D, Luo C (2018) Cascade mask generation framework for fast small object detection. In: 2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp 1\u20136","DOI":"10.1109\/ICME.2018.8486561"},{"key":"3549_CR35","doi-asserted-by":"crossref","unstructured":"Dong J, Chen Q, Yan S, Yuille A (2014) Towards unified object detection and semantic segmentation. In: European conference on computer vision. Springer, pp 299\u2013314","DOI":"10.1007\/978-3-319-10602-1_20"},{"key":"3549_CR36","doi-asserted-by":"crossref","unstructured":"Sistu G, Leang I, Yogamani S (2018) Real-time joint object detection and semantic segmentation network for automated driving. Adv Neural Inf Process Syst:1\u20135","DOI":"10.5220\/0007248401730180"},{"key":"3549_CR37","doi-asserted-by":"crossref","unstructured":"Uijlings JRR, Van De Sande KEA, Gevers T, Smeulders AWM (2013) Selective search for object recognition. Int J Comput Vis 104(2):154\u2013171","DOI":"10.1007\/s11263-013-0620-5"},{"key":"3549_CR38","unstructured":"Li Z, Zhou F (2017) Fssd: feature fusion single shot multibox detector. CoRR, arxIv:1712.00960"},{"key":"3549_CR39","doi-asserted-by":"crossref","unstructured":"Lin T-Y, Goyal P, Girshick R, He K, Doll\u00e1r P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980\u20132988","DOI":"10.1109\/ICCV.2017.324"},{"key":"3549_CR40","doi-asserted-by":"crossref","unstructured":"Zhang Z, Qiao S, Xie C, Shen W, Wang B, Yuille A L (2018) Single-shot object detection with enriched semantics. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5813\u20135821","DOI":"10.1109\/CVPR.2018.00609"},{"key":"3549_CR41","doi-asserted-by":"crossref","unstructured":"Wang H, Wang Q, Gao M, Li P, Zuo W (2018) Multi-scale location-aware kernel representation for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1248\u20131257","DOI":"10.1109\/CVPR.2018.00136"},{"key":"3549_CR42","doi-asserted-by":"crossref","unstructured":"Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr PHS (2017) End-to-end representation learning for correlation filter based tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2805\u20132813","DOI":"10.1109\/CVPR.2017.531"},{"key":"3549_CR43","unstructured":"Dai J, Li Y, He K, Sun J (2016) R-fcn: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems, pp 379\u2013387"},{"key":"3549_CR44","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"3549_CR45","doi-asserted-by":"crossref","unstructured":"Xie E, Sun P, Song X, Wang W, Liu X, Liang D, Shen C, Luo P (2020) Polarmask: Single shot instance segmentation with polar representation. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 12193\u201312202","DOI":"10.1109\/CVPR42600.2020.01221"},{"key":"3549_CR46","doi-asserted-by":"crossref","unstructured":"Chen X, Girshick R, He K, Doll\u00e1r P (2019) Tensormask: A foundation for dense object segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp 2061\u20132069","DOI":"10.1109\/ICCV.2019.00215"},{"key":"3549_CR47","doi-asserted-by":"crossref","unstructured":"Wang S, Gong Y, Xing J, Huang L, Huang C, Hu W (2020) Rdsnet: A new deep architecture forreciprocal object detection and instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 12208\u201312215","DOI":"10.1609\/aaai.v34i07.6902"},{"issue":"11","key":"3549_CR48","doi-asserted-by":"publisher","first-page":"3782","DOI":"10.1109\/TPAMI.2020.2991457","volume":"43","author":"K Chen","year":"2020","unstructured":"Chen K, Lin W, Li J, See J, Wang J, Zou J (2020) Ap-loss for accurate one-stage object detection. IEEE Trans Pattern Anal Mach Intell 43(11):3782\u20133798","journal-title":"IEEE Trans Pattern Anal Mach Intell"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03549-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03549-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03549-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T04:44:33Z","timestamp":1672807473000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03549-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,30]]},"references-count":48,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["3549"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03549-6","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,4,30]]},"assertion":[{"value":"21 March 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 April 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflicts of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}}]}}